56 research outputs found

    Effects of natal and novel Crithidia bombi (Trypanosomatidae) infections on Bombus terrestris hosts

    Get PDF
    Abstract.: Bombus terrestris queens may contract infections of the trypanosome parasite Crithidia bombi from their natal nests; alternatively, the queens may also become infected after leaving their natal nests while foraging on contaminated flowers. We expected that, because C. bombi adapts to the natal colony during the previous generation, C. bombi infections from the natal colony will be more damaging to queens than a novel infection acquired from an unrelated colony. To test our prediction, we used queens exposed to three treatment groups: natal infection, novel infection, and control (no infection). We found that the infected queens produced fewer males and had a lower overall fitness, but we did not find any differences based on the source of the infections. We noted a strong matriline effect on the likelihood of a queen surviving hibernation and successfully founding a colony. Taken together, our results suggest that while C. bombi affects the fitness of B. terrestris, one vertical transmission event is no more damaging than randomly encountered infections. Furthermore, we found that, at least under laboratory conditions, matriline effects on fitness could override the effect of infection statu

    The evolutionary costs of immunological maintenance and deployment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolution of disease resistance and immune function may be limited if increased immunocompetence comes at the expense of other fitness-determining traits. Both the maintenance of an immune system and the deployment of an immune response can be costly, and the observed costs may be evaluated as either physiological or evolutionary in origin. Evolutionary costs of immunological maintenance are revealed as negative genetic correlations between immunocompetence and fitness in the absence of infection. Costs of deployment are most often studied as physiological costs associated with immune system induction, however, evolutionary costs of deployment may also be present if genotypes vary in the extent of the physiological cost experienced.</p> <p>Results</p> <p>In this study we analyzed evolutionary and physiological costs of immunity in two environments representing food-limited and food-unlimited conditions. Patterns of genetic variation were estimated in females from 40 'hemiclone families' isolated from a population of <it>D. melanogaster</it>. Phenotypes evaluated included fecundity, weight measures at different time periods and resistance to <it>Providencia rettgeri</it>, a naturally occurring Gram-negative pathogen of <it>D. melanogaster</it>. In the food-limited environment we found a negative genetic correlation between fecundity in the absence of infection and resistance, indicative of an evolutionary cost of maintenance. No such correlation was observed in the food-unlimited environment, and the slopes of these correlations significantly differed, demonstrating a genotype-by-environment interaction for the cost of maintenance. Physiological costs of deployment were also observed, but costs were primarily due to wounding. Deployment costs were slightly exaggerated in the food-limited environment. Evolutionary costs of immunological deployment on fecundity were not observed, and there was only marginally significant genetic variation in the cost expressed by changes in dry weight.</p> <p>Conclusion</p> <p>Our results suggest that the costs of immunity may be an important factor limiting the evolution of resistance in food-limited environments. However, the significant genotype-by-environment interaction for maintenance costs, combined with the observation that deployment costs were partially mitigated in the food-unlimited environment, emphasizes the importance of considering environmental variation when estimating patterns of genetic variance and covariance, and the dubious nature of predicting evolutionary responses to selection from quantitative genetic estimates carried out in a single environment.</p

    Phenology determines seasonal variation in ectoparasite loads in a natural insect population

    Get PDF
    1. The extent to which individuals are parasitised is a function of exposure to parasites and the immune response, which in ectotherms may be associated with temperature. 2. We test the hypothesis that seasonal variation in ectoparasite burden is driven by temperature using an extensive mark-release-recapture study of adult Coenagrion puella (L.) (Zygoptera) as a model system. Mite counts were taken both at capture and on a subset of subsequent recaptures over two entire, consecutive breeding seasons. 3. Emergence date was the most significant factor in determining individual differences in mite burden, and mean counts for individuals emerging on the same days showed strong unimodal relationships with time of season. Subsequent recounting of mites on a subset of individuals showed that patterns of loss of mites were similar between seasons. 4. While temperature did not significantly affect mite burdens within seasons and ectoparasite prevalence was very similar across the two seasons, intensity of infection and rate of mite gain in unparasitised individuals were significantly higher in the cooler season. 5. We demonstrate that, while temperature may modulate the invertebrate immune response, this modulation does not manifest in variations in mite burdens in natural populations

    The impacts of environmental warming on Odonata: a review

    Get PDF
    Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns

    Genotype-by-Environment Interactions and Adaptation to Local Temperature Affect Immunity and Fecundity in Drosophila melanogaster

    Get PDF
    Natural populations of most organisms harbor substantial genetic variation for resistance to infection. The continued existence of such variation is unexpected under simple evolutionary models that either posit direct and continuous natural selection on the immune system or an evolved life history “balance” between immunity and other fitness traits in a constant environment. However, both local adaptation to heterogeneous environments and genotype-by-environment interactions can maintain genetic variation in a species. In this study, we test Drosophila melanogaster genotypes sampled from tropical Africa, temperate northeastern North America, and semi-tropical southeastern North America for resistance to bacterial infection and fecundity at three different environmental temperatures. Environmental temperature had absolute effects on all traits, but there were also marked genotype-by-environment interactions that may limit the global efficiency of natural selection on both traits. African flies performed more poorly than North American flies in both immunity and fecundity at the lowest temperature, but not at the higher temperatures, suggesting that the African population is maladapted to low temperature. In contrast, there was no evidence for clinal variation driven by thermal adaptation within North America for either trait. Resistance to infection and reproductive success were generally uncorrelated across genotypes, so this study finds no evidence for a fitness tradeoff between immunity and fecundity under the conditions tested. Both local adaptation to geographically heterogeneous environments and genotype-by-environment interactions may explain the persistence of genetic variation for resistance to infection in natural populations

    Bumble bee parasite strains vary in resistance to phytochemicals

    Get PDF
    Nectar and pollen contain diverse phytochemicals that can reduce disease in pollinators. However, prior studies showed variable effects of nectar chemicals on infection, which could reflect variable phytochemical resistance among parasite strains. Inter-strain variation in resistance could influence evolutionary interactions between plants, pollinators, and pollinator disease, but testing direct effects of phytochemicals on parasites requires elimination of variation between bees. Using cell cultures of the bumble bee parasite Crithidia bombi, we determined (1) growth-inhibiting effects of nine floral phytochemicals and (2) variation in phytochemical resistance among four parasite strains. C. bombi growth was unaffected by naturally occurring concentrations of the known antitrypanosomal phenolics gallic acid, caffeic acid, and chlorogenic acid. However, C. bombi growth was inhibited by anabasine, eugenol, and thymol. Strains varied >3-fold in phytochemical resistance, suggesting that selection for phytochemical resistance could drive parasite evolution. Inhibitory concentrations of thymol (4.53-22.2 ppm) were similar to concentrations in Thymus vulgaris nectar (mean 5.2 ppm). Exposure of C. bombi to naturally occurring levels of phytochemicals—either within bees or during parasite transmission via flowers—could influence infection in nature. Flowers that produce antiparasitic phytochemical, including thymol, could potentially reduce infection in Bombus populations, thereby counteracting a possible contributor to pollinator decline

    Temporal Analysis of the Honey Bee Microbiome Reveals Four Novel Viruses and Seasonal Prevalence of Known Viruses, Nosema, and Crithidia

    Get PDF
    Honey bees (Apis mellifera) play a critical role in global food production as pollinators of numerous crops. Recently, honey bee populations in the United States, Canada, and Europe have suffered an unexplained increase in annual losses due to a phenomenon known as Colony Collapse Disorder (CCD). Epidemiological analysis of CCD is confounded by a relative dearth of bee pathogen field studies. To identify what constitutes an abnormal pathophysiological condition in a honey bee colony, it is critical to have characterized the spectrum of exogenous infectious agents in healthy hives over time. We conducted a prospective study of a large scale migratory bee keeping operation using high-frequency sampling paired with comprehensive molecular detection methods, including a custom microarray, qPCR, and ultra deep sequencing. We established seasonal incidence and abundance of known viruses, Nosema sp., Crithidia mellificae, and bacteria. Ultra deep sequence analysis further identified four novel RNA viruses, two of which were the most abundant observed components of the honey bee microbiome (∼1011 viruses per honey bee). Our results demonstrate episodic viral incidence and distinct pathogen patterns between summer and winter time-points. Peak infection of common honey bee viruses and Nosema occurred in the summer, whereas levels of the trypanosomatid Crithidia mellificae and Lake Sinai virus 2, a novel virus, peaked in January

    Continental variation in wing pigmentation in calopteryx damselflies is related to the presence of heterospecifics

    Get PDF
    Wing pigmentation in Calopteryx damselflies, caused by the deposition of melanin, is energetically expensive to produce and enhances predation risk. However, patterns of melanisation are used in species identification, greater pigmentation is an accurate signal of male immune function in at least some species, and there may be a role for pigment in thermoregulation. This study tested two potential hypotheses to explain the presence of, and variation in, this pigmentation based on these three potential benefits using 907 male specimens of Calopteryx maculata collected from49 sites (34 discrete populations) across the geographical range of the species in North America: (i) pigmentation varies with the presence of the closely related species, Calopteryx aequabilis, and (ii) pigment increases at higher latitudes as would be expected if it enhances thermoregulatory capacity. No gradual latitudinal pattern was observed, as might be expected if pigmentation was involved in thermoregulation. However, strong variation was observed between populations that were sympatric or allopatric with C. aequabilis. This variation was characterised by dark wings through allopatry in the south of the range and then a step change tomuch lighter wings at the southern border of sympatry. Pigmentation then increased further north into the sympatric zone, finally returning to allopatry levels at the northern range margin. These patterns are qualitatively similar to variation in pigmentation in C. aequabilis, meaning that the data are consistent with what would be expected from convergent character displacement. Overall, the results corroborate recent research that has suggested sexual selection as a primary driver behind the evolution of wing pigmentation in this group

    Ecological immunology of lestid damselflies, explaining variation in immune defense against parasitic water mites

    No full text
    grantor: University of TorontoThis thesis tests predictions of the emerging theory of ecological immunology using variation in immune expression of 'Lestes dryas' Kirby, ' Lestes focipatus' Rambur, 'Lestes unguiculatus' Hagen and 'Lestes congener' Hagen to a generalist parasitic water mite, 'Arrenurus planus' Marshall. Immune responses of the four lestid species were compared as they relate to prevalence and intensity of mite infection; these measures of parasitism did not fully explain among-species variation. Within-species variation in immunity of 'L. forcipatus' was related to time of season, but not to host body size or asymmetry, measures of host condition. When 'L. forcipatus' were allowed to respond to Sepahdex beads at a fixed temperature across season, no seasonal pattern in immunity was observed and a positive correlation between condition and immune response in males was detected. These results implicate seasonal variation in temperature as being a major factor in determining immune responsiveness of lestid damselflies.M.Sc

    On understanding variation in immune expression of the damselflies Lestes spp.

    No full text
    Immune ability and immune expression have been viewed as life-history traits that are influenced by such factors as the likelihood of being parasitized, intensity and costs of parasitism, and trade-offs associated with immune expression. In this paper we show that different patterns of infestation by a generalist ectoparasite, Arrenurus planus Marshall (Arrenuridae: Hydrachnida), do not fully explain the variation in immune expression across four species of sympatric damselflies (Lestidae: Zygoptera). Within species, no gender biases in immune expression were evident. Whereas both males and females of one oft-exploited species did not mount immune responses against attending larval mites, males and females of three other species showed similar immune responses, with variable expression. The immune response was melanotic encapsulation of mite feeding tubes, and was associated with dead mites. Of the three species showing immune expression, the species with the highest prevalence and intensity of infestation had a significantly higher proportion of individuals responding immunologically to mites. In conclusion, current infestation levels only partially predict immune investment; consideration of the timing of emergence of different species suggests that season may be an important predictor of immune investment
    corecore