41 research outputs found

    MgB2 SQUID for Magnetocardiography

    Get PDF

    Immunomodulatory Effect of Linezolid on Methicillin-Resistant Staphylococcus aureus Supernatant-Induced MUC5AC Overexpression in Human Airway Epithelial Cells

    Get PDF
    Linezolid is the first member of the oxazolidinones and is active against drug-resistant Gram-positive pathogens, such as methi-cillin- resistant Staphylococcus aureus (MRSA). Additionally, linezolid shows an immunomodulatory effect, such as inhibition of inflammatory cytokine production. In this study, we examined the effect of linezolid on MRSA-induced MUC5AC overexpression in airway epithelial cells. In this study, an MRSA supernatant was used to avoid the direct effect of linezolid on MRSA. MUC5AC protein production was significantly increased with a 40-fold dilution of MRSA supernatant. At the mRNA level, MUC5AC gene expression was significantly increased 6 and 9 h after stimulation. In an inhibition study, linezolid significantly reduced MRSA-induced MUC5AC protein and mRNA overexpression at concentrations of 5 and 20 μg/ml, which were the same as the trough and peak concentrations in human epithelial lining fluid. In an analysis of cell signaling, among the mitogen-activated protein kinase inhibitors, only the extracellular signal-regulated protein kinase 1/2 (ERK1/2) inhibitor reduced the MUC5AC protein production to the same level as that of the control; on Western blot analysis, only ERK1/2 was phosphorylated by the MRSA supernatant. In addition, the ERK1/2 phosphorylation was inhibited by linezolid. MUC5AC and MUC5B are the major barrier that traps inhaled microbial organisms, particulates, and foreign irritants. However, in patients with chronic respiratory diseases, pathogen-induced MUC5AC overexpression causes many problems, and control of the overexpression is important. Thus, this study revealed that linezolid showed a direct immunomodulatory effect in airway epithelial cells

    Systematic characterization of upper critical fields for MgB2_2 thin films using the two-band superconducting theory

    Full text link
    We present experimental results of the upper critical fields Hc2H_{\rm c2} of various MgB2_2 thin films prepared by the molecular beam epitaxy, multiple-targets sputtering, and co-evaporation deposition apparatus. Experimental data of the Hc2(T)H_{\rm c2}(T) are successfully analyzed by applying the Gurevich theory of dirty two-band superconductivity in the case of Dπ/Dσ>1D_{\pi}/D_{\sigma}>1, where DπD_{\pi} and DσD_{\sigma} are the intraband electron diffusivities for π\pi and σ\sigma bands, respectively. We find that the parameters obtained from the analysis are strongly correlated to the superconducting transition temperature TcT_{\rm c} of the films. We also discuss the anormalous narrowing of the transition width at intermediate temperatures confirmed by the magnetoresistance measurements.Comment: 7 pages, 7 figures, submitted to Phys. Rev.

    Prevotella intermedia Induces Severe Bacteremic Pneumococcal Pneumonia in Mice with Upregulated Platelet-Activating Factor Receptor Expression

    Get PDF
    Streptococcus pneumoniae is the leading cause of respiratory infection worldwide. Although oral hygiene has been considered a risk factor for developing pneumonia, the relationship between oral bacteria and pneumococcal infection is unknown. In this study, we examined the synergic effects of Prevotella intermedia, a major periodontopathic bacterium, on pneumococcal pneumonia. The synergic effects of the supernatant of P. intermedia (PiSup) on pneumococcal pneumonia were investigated in mice, and the stimulation of pneumococcal adhesion to human alveolar (A549) cells by PiSup was assessed. The effects of PiSup on platelet-activating factor receptor (PAFR) transcript levels in vitro and in vivo were analyzed by quantitative real-time PCR, and the differences between the effects of pneumococcal infection induced by various periodontopathic bacterial species were verified in mice. Mice inoculated with S. pneumoniae plus PiSup exhibited a significantly lower survival rate, higher bacterial loads in the lungs, spleen, and blood, and higher inflammatory cytokine levels in the bronchoalveolar lavage fluid (macrophage inflammatory protein 2 and tumor necrosis factor alpha) than those infected without PiSup. In A549 cells, PiSup increased pneumococcal adhesion and PAFR transcript levels. PiSup also increased lung PAFR transcript levels in mice. Similar effects were not observed in the supernatants of Porphyromonas gingivalis or Fusobacterium nucleatum. Thus, P. intermedia has the potential to induce severe bacteremic pneumococcal pneumonia with enhanced pneumococcal adhesion to lower airway cells

    Fluoroquinolone resistance in extended-spectrum β-lactamase-producing Klebsiella pneumoniae in a Japanese tertiary hospital: silent shifting to CTX-M-15-producing K. pneumoniae

    Get PDF
    Purpose. Fluoroquinolone resistance (FQ-r) in extended-spectrum β-lactamase (ESBL) producers is an urgent health concern in countries where ESBL-producing K. pneumoniae (ESBL-Kpn) is prevalent. We investigated FQ-r in Japan where ESBL-Kpn is less prevalent. Methodology. Clinical ESBL-Kpn isolates from 2011 to 2013 were collected in Nagasaki University Hospital. The ESBL genotypes included CTX-M-15, and the mechanisms of FQ-r through plasmid-mediated quinolone resistance (PMQR) and mutations in quinolone resistance-determining regions (QRDRs) were examined. Clonality was analysed by enterobacterial repetitive intergenic consensus (ERIC)-PCR and multi-locus sequence typing was performed on selected isolates. Results/Key findings. Thirty ESBL-Kpn isolates, including seven levofloxacin-resistant isolates, were obtained from different patients. An increase in CTX-M-15-producing strains was observed during the study period (0/11 in 2011, 3/8 in 2012, and 5/11 in 2013). PMQR was detected in 53.3?% of the isolates and aac-(6′)-Ib-cr was the most common (36.7?%). ST15 was observed in 60.0?% of the isolates, and for the most predominant ERIC-PCR profiles, 62.5?% of the isolates possessed the CTX-M-15 genotype and 71.4?% were levofloxacin-resistant. Levofloxacin-resistance was significantly more common in CTX-M-15 isolates (62.5?%) compared to non-CTX-M-15 isolates (9.1?%). Three QRDR mutations and aac(6′)-Ib-cr, but not qnrB and qnrS, were significantly enriched in the CTX-M-15 isolates (100.0?%) compared to the non-CTX-M-15 isolates (13.6?%). Conclusion. Cumulatively, these results indicate that the epidemic strain, the CTX-M-15-producing K. pneumoniae ST15, is covertly spreading even when ESBL producers are not prevalent. Monitoring these epidemic strains and ESBLs in general is important for quickly identifying health crises and minimizing future risks from FQ-r ESBL-Kpn

    Efficacy and Pharmacokinetics of the Combination of OP0595 and Cefepime in a Mouse Model of Pneumonia Caused by Extended-Spectrum-Beta-Lactamase-Producing Klebsiella pneumoniae

    Get PDF
    OP0595 (RG6080) is a novel diazabicyclooctane that inhibits class A and C serine beta-lactamases. Although the combination of OP0595 and cefepime (FEP) showed good in vitro activity against extended-spectrum-beta-lactamase (ESBL)-producing pathogens, the effect of the combination therapy against severe infections, such as pneumonia or bacteremia, remains unknown in vivo. In this study, we investigated the efficacy and pharmacokinetics of the combination therapy of OP0595 and FEP in a mouse model of pneumonia caused by Klebsiella pneumoniae harboring SHV- and CTX-M-9-type ESBLs. The infected BALB/c mice were intraperitoneally administered saline (control), 100 mg/kg of body weight of FEP, 20 mg/kg of OP0595, or both FEP and OP0595, twice a day. The MIC of FEP against the bacteria was 8 mg/liter and markedly improved to 0.06 mg/liter with the addition of 0.5 mg/ml of OP0595. In the survival study, the combination of FEP and OP0595 significantly improved the survival rate compared with that reported with either OP0595 or FEP alone (P < 0.001). The number of bacteria in the lungs and blood significantly decreased in the combination therapy group compared to that reported for the monotherapy groups (P < 0.001). In addition, the in vivo effect depended on the dose of FEP. However, pharmacokinetic analysis revealed that the percentage of time above MIC remained constant when increasing the dose of FEP in combination with 20 mg/kg of OP0595. The results of our study demonstrated the in vivo effectiveness of the combination of OP0595 and FEP

    In vivo efficacy of KRP-109, a novel elastase inhibitor, in a murine model of severe pneumococcal pneumonia.

    Get PDF
    KRP-109 is a novel specific inhibitor of neutrophil elastase (NE). Various studies suggest that NE inhibitors reduce lung injury associated with systemic inflammatory response syndrome (SIRS). In this study, the efficacy of KRP-109 was examined using a murine model of severe pneumonia induced by Streptococcus pneumoniae (S. pneumoniae). Female mice (CBA/J, aged 5 weeks) were inoculated intranasally with penicillin-susceptible S. pneumoniae (ATCC49619 strain, 2.5 × 10(8) CFU/mouse). KRP-109 (30 or 50 mg/kg) or physiological saline as a control was administered intraperitoneally every 8 h beginning at 8 h after inoculation, and survival rate was evaluated over 7 days. Histopathological and bacteriological analyses of the lung, and bronchoalveolar lavage were performed at 48 h post-infection. The mice treated with KRP-109 (KRP-109 mice) tended to have higher survival rate than those given saline. The lung tissues of the KRP-109 mice had few neutrophils in the alveolar walls and less inflammation. Furthermore, KRP-109 decreased significantly total cell and neutrophil counts, and cytokine levels (interleukin 1β and macrophage inflammatory protein 2) in bronchoalveolar lavage fluid. Viable bacterial numbers in lung were not influenced by treatment of KRP-109. The present results indicate that KRP-109 reduces lung inflammation in a murine model, and that KRP-109 may be useful for the treatment of patients with severe pneumonia

    Influence of antimicrobial regimen on decreased in-hospital mortality of patients with MRSA bacteremia

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important causes of bacteremia. Recently, several epidemiological and microbiological changes have become evident in MRSA infections. The purposes of this study were to assess clinical characteristics of patients with MRSA bacteremia and microbiological changes in MRSA. We conducted a retrospective observational study on patients with MRSA bacteremia who were hospitalized between 2008 and 2011. We used univariate and multivariate analysis to evaluate the predictors associated with 30-day mortality. The 7-day and 30-day mortality rates were 12.0% and 25.3%, respectively. According to multivariate analysis, the independent predictors that associated with 30-day mortality were leukopenia, low serum albumin, high sequential organ failure assessment (SOFA) score, and quinolone use within 30 days. Compared to previous data (2003-2007), the SOFA score of the new data set remained unchanged, but in-hospital mortality decreased significantly. In particular, the mortality associated with use of vancomycin (VCM) was significantly lower. Although the minimuminhibitory concentration of VCM required to inhibit the growth of 90% of organisms (MIC90) had not changed, the trough value of VCM changed significantly; a VCM trough value of 10 or greater was significantly higher compared to previous data. Of the staphylococcal cassette chromosome mec (SCCmec) types, SCCmec II values decreased significantly, and SCCmec I and IV values increased significantly. Our results indicate that changes in VCM usage might contribute to decreased in-hospital mortality

    Generalizations of Nakayama ring. IV. Left serial rings with (∗,1)

    No full text
    corecore