81 research outputs found

    Optimization of isoprene production using a metabolically engineered Escherichia Coli

    Get PDF
    The volatile C5 hydrocarbon, isoprene is an important platform chemical, which has been used in the manufacture of synthetic rubber for tires and also has the potential for various other applications such as elastomers and adhesives. Moreover, isoprene is convertible to biofuel blend stocks such as C10 gasoline, C15 diesel, and jet fuels because of its higher energy content than other biofuels. Although isoprene is currently derived from petroleum, its sustainable supply has been suffered from price fluctuation of crude oil, high refining cost and energy consumption, and low recovery yield of pure isoprene. As an alternative, the biologically produced isoprene (bio-isoprene) has been developed rapidly for the last decade. Bio-isoprene is synthesized from dimethylallyl diphosphate (DMAPP), which is derived from mevalonate (MVA) pathway or the methylerythritol phosphate (MEP) pathway, by isoprene synthase. In this study, metabolic engineering for enhanced production of bio-isoprene was performed by deletion of relevant genes and optimization of culture condition. In comparison of isoprene production between E.coli DH5α and MG1655, lower isoprene production was observed in MG1655. The lower isoprene production in E. coli MG1655 was ascribed to the presence of recA gene which is absent in the DH5α strain. The deletion of recA gene in E.coli MG1655 allows higher isoprene production than E. coli DH5α. Moreover, the optimized expression of isoprene synthesis pathway with 0.03mM IPTG induction enhanced the isoprene production up to 2,850 mg/L. Overall, isoprene production through the optimization was improved by 28.5-fold compared to the initial production of MG1655 strain. Please click Additional Files below to see the full abstract

    Effects of warming and eutrophication on coastal phytoplankton production

    Get PDF
    Phytoplankton production in coastal waters influences seafood production and human health and can lead to harmful algal blooms. Water temperature and eutrophication are critical factors affecting phytoplankton production, although the combined effects of warming and nutrient changes on phytoplankton production in coastal waters are not well understood. To address this, phytoplankton production changes in natural waters were investigated using samples collected over eight months, and under 64 different initial conditions, established by combining four different water temperatures (i.e., ambient T, + 2, + 4, and + 6 degrees C), and two different nutrient conditions (i.e., non-enriched and enriched). Under the non-enriched conditions, the effect of warming on phytoplankton production was significantly positive in some months, significantly negative in others, or had no effect. However, under enriched conditions, warming affected phytoplankton production positively in all months except one, when the salinity was as low as 6.5. These results suggest that nutrient conditions can alter the effects of warming on phytoplankton production. Of several parameters, the ratio of initial nitrate concentration to chlorophyll a concentration [NCCA, mu M (pg L-1)(-1))] was one of the most critical factors determining the directionality of the warming effects. In laboratory experiments, when NCCA in the ambient or nutrient-enriched waters was >= 1.2, warming increased or did not change phytoplankton production with one exception; however, when NCCA was < 1.2, warming did not change or decreased production. In the time series data obtained from the coastal waters of four target countries, when NCCA was 1.5 or more, warming increased phytoplankton production, whereas when NCCA was lower than 1.5, warming lowered phytoplankton production, Thus, it is suggested that NCCA could be used as an index for predicting future phytoplankton production changes in coastal waters.11Ysciescopu

    Gene Expression Profile during Chondrogenesis in Human Bone Marrow derived Mesenchymal Stem Cells using a cDNA Microarray

    Get PDF
    Mesenchymal stem cells (MSCs) have the capacity to proliferate and differentiate into multiple connective tissue lineages, which include cartilage, bone, and fat. Cartilage differentiation and chondrocyte maturation are required for normal skeletal development, but the intracellular pathways regulating this process remain largely unclear. This study was designed to identify novel genes that might help clarify the molecular mechanisms of chondrogenesis. Chondrogenesis was induced by culturing human bone marrow (BM) derived MSCs in micromass pellets in the presence of defined medium for 3, 7, 14 or 21 days. Several genes regulated during chondrogenesis were then identified by reverse transcriptase-polymerase chain reaction (RT-PCR). Using an ABI microarray system, we determined the differential gene expression profiles of differentiated chondrocytes and BM-MSCs. Normalization of this data resulted in the identification of 1,486 differentially expressed genes. To verify gene expression profiles determined by microarray analysis, the expression levels of 10 genes with high fold changes were confirmed by RT-PCR. Gene expression patterns of 9 genes (Hrad6B, annexinA2, BMP-7, contactin-1, peroxiredoxin-1, heat shock transcription factor-2, synaptotagmin IV, serotonin receptor-7, Axl) in RT-PCR were similar to the microarray gene expression patterns. These findings provide novel information concerning genes involved in the chondrogenesis of human BM-MSCs

    Comparisons of food intake between breast cancer patients and controls in Korean women

    Get PDF
    The purpose of this study was to compare food intakes between Korean breast cancer patients and a healthy control group. We compared the intake of nutrients of 117 food items between Korean breast cancer patients (n=97) and age matched healthy controls (n=97). Nutrient intake was estimated using a quantitative food frequency questionnaire. The mean caloric intake of breast cancer patients and healthy controls was not significantly different. Breast cancer patients consumed significantly less fat and antioxidant nutrients such as vitamin A, retinol, β-carotene, vitamin C and vitamin E when compared to the control subjects. Among the food items, the intake of eggs (p<0.01), legumes (p<0.05), vegetables (p<0.05), seasonings (p<0.001), and oils and fats (p<0.01) in breast cancer patients was significantly lower than that in the controls. These results suggest that Korean breast cancer patients consumed less amount of soy and vegetables, which are rich source of antioxidant nutrients and phytosterols. Thus, dietary guidance to increase intake of these foods may be beneficial in the prevention of breast cancer

    Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≥30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≥90 days, chronic dialysis for ≥90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie

    Description of the new heterotrophic dinoflagellate <i>Stoeckeria changwonensis</i> n. sp from Korean coastal waters and emended description of the genus <i>Stoeckeria</i> and the type species <i>Stoeckeria algicida</i>

    No full text
    The planktonic heterotrophic dinoflagellate Stoeckeria changwonensis n. sp. isolated from the coastal waters off Korea is described from living and fixed cells by light, scanning electron (SEM), and transmission electron microscopy (TEM). For comparison with closely related species, the ultrastructure of Stoeckeria algicida, the only Stoeckeria species previously known, using TEM was also examined. Furthermore, DNA sequence data were collected from the small subunit (SSU), the D1-D3 large subunit (LSU), internal transcribed spacer regions (ITS1 and ITS2), and 5.8S of the ribosomal rDNA of S. changwonensis and compared to S. algicida. The SSU, ITS1-5.8S-ITS2, and the D1-D3 LSU rDNA sequences of the new dinoflagellate were ca. 2.2%, 16.8%, and 5.4% different, respectively, from those of S. algicida, but very similar to those of an unidentified dinoflagellate strain from Florida, USA, known as &quot;Shepherd&apos;s Crook&quot;. In the phylogenetic tree based on D1-D3 LSU rDNA sequences, S. changwonensis formed a clade with this unidentified strain, which was clearly divergent from a clade comprising S. algicida and another unidentified &quot;Shepherd&apos;s Crook&quot; strain. Morphological analysis showed that S. changwonensis had thin plates with a Kofoidian plate formula of Po, cp, X, 4&apos;, 2a, 7&quot;, PC, 6c, 5+s, 5&quot;, Op, and 2&quot;, which conformed to the genus Stoeckeria. The size and overall shape of this dinoflagellate were similar to those of S. algicida. However, the size and position of each cingular plate relative to the surrounding plates in S. changwonensis were clearly different from those of S. algicida. The length of c2, c3, c4, c5, and c6 of S. changwonensis were similar, unlike in S. algicida, in which the lengths of c3 and c4 greatly exceeded that of c2, c5, and c6. In addition, plate c6 of S. changwonensis was sufficiently long to contact the 6&quot; plate, again in contrast with what happens in S. algicida. Using TEM, an eyespot in the sulcal areas of both Stoeckeria changwonensis and Stoeckeria algicida, which has not been seen in other species of the family Pfiesteriaceae was herein reported for the first time. On the basis of morphological and phylogenetic criteria, it is proposed that this is a new species of the genus Stoeckeria. In addition, the description of S. algicida has been emended to include previously unreported details regarding the relative size and position of the cingular plates, the presence of eyespots, and the ultrastructure of its cells examined using TEM. (C) 2014 Elsevier B.V. All rights reserved.N

    Feeding by the Newly Described, Nematocyst-Bearing Heterotrophic Dinoflagellate Gyrodiniellum shiwhaense

    No full text
    We explored the feeding ecology of the newly described, nematocyst-bearing heterotrophic dinoflagellate Gyrodiniellum shiwhaense (GenBank accession number = FR720082). Using several different types of microscopes and high-resolution video-microscopy, we investigated feeding behavior and types of prey species that G. shiwhaense feeds upon. Additionally, we measured its growth and ingestion rates on its optimal algal prey, the cryptophyte Teleaulax sp. and the dinoflagellate Amphidinium carterae, as a function of prey concentration. These rates were measured for other edible prey at single prey concentrations at which the growth and ingestion rates of G. shiwhaense were saturated. After anchoring the prey with a tow filament, G. shiwhaense fed using a peduncle, ingesting small algal species with equivalent spherical diameters (ESDs) of &lt; 13 mu m. However, it did not feed on larger algal species that had ESDs &gt;= 13 mu m or the small diatom Skeletonema costatum. The specific growth rates for G. shiwhaense feeding upon Teleaulax sp. and A. carterae increased rapidly with increasing mean prey concentration before saturating at concentrations of ca. 180-430 ng C/ml. The maximum specific growth rate of G. shiwhaense on Teleaulax sp. and A. carterae were 1.05 and 0.82/d, respectively. However, Heterosigma akashiwo did not support positive growth of G. shiwhaense. The maximum ingestion rates of G. shiwhaense on Teleaulax sp. and A. carterae were 0.35 and 0.54 ng C/grazer/d, respectively. The calculated grazing coefficients attributable to G. shiwhaense on co-occurring cryptophytes and Amphidinium spp. were 0.01-1.87/d and 0.08-2.60/d, respectively. Our results suggest that G. shiwhaense can have a considerable grazing impact on algal populations.N
    corecore