1,460 research outputs found

    Monolithic arrays of surface emitting laser NOR logic devices

    Full text link

    Effects of phosphate and hydrogen peroxide on the performance of a biological activated carbon filter for enhanced biofiltration

    Get PDF
    Biofilm formation on biofilters can influence their hydraulic performance, thereby leading to head loss and an increase in energy use and costs for water utilities. The effects of a range of factors, including hydrogen peroxide and phosphate, on the performance of biological activated carbon (BAC) and biofilm formation were investigated using laboratory-scale columns. Head loss, total carbohydrates, and proteins were reduced in the nutrient-enhanced, oxidant-enhanced, and nutrient + oxidant-enhanced BAC filters. However, there were no changes in the removal of dissolved organic matter, trihalomethane formation potential, or selected trace organic contaminants. The biofilm formation on polyvinyl chloride and stainless steel coupons using the laboratory biofilm reactor system was lower when the effluent from a nutrient-enhanced column was used, which indicated that there was less biofilm formation in the distribution systems. This may have been because the effluent from the nutrient-enhanced column was more biologically stable. Therefore, enhanced biofiltration could be used not only to reduce head loss in biofilters, but also to delay biofilm formation in distribution systems

    Tracking Performance of the Scintillating Fiber Detector in the K2K Experiment

    Full text link
    The K2K long-baseline neutrino oscillation experiment uses a Scintillating Fiber Detector (SciFi) to reconstruct charged particles produced in neutrino interactions in the near detector. We describe the track reconstruction algorithm and the performance of the SciFi after three years of operation.Comment: 24pages,18 figures, and 1 table. Preprint submitted to NI

    Influence of a classical homogeneous gravitational field on dissipative dynamics of the Jaynes-Cummings model with phase damping

    Get PDF
    In this paper, we study the dissipative dynamics of the Jaynes-Cummings model with phase damping in the presence of a classical homogeneous gravitational field. The model consists of a moving two-level atom simultaneously exposed to the gravitational field and a single-mode traveling radiation field in the presence of the phase damping. We present a quantum treatment of the internal and external dynamics of the atom based on an alternative su(2) dynamical algebraic structure. By making use of the super-operator technique, we obtain the solution of the master equation for the density operator of the quantum system, under the Markovian approximation. Assuming that initially the radiation field is prepared in a Glauber coherent state and the two-level atom is in the excited state, we investigate the influence of gravity on the temporal evolution of collapses and revivals of the atomic population inversion, atomic dipole squeezing, atomic momentum diffusion, photon counting statistics and quadrature squeezing of the radiation field in the presence of phase damping.Comment: 25 pages, 15 figure

    Buffer layer-assisted growth of Ge nanoclusters on Si

    Get PDF
    In the buffer layer-assisted growth method, a condensed inert gas layer of xenon, with low-surface free energy, is used as a buffer to prevent direct interactions of deposited atoms with substrates. Because of␣an unusually wide applicability, the buffer layer-assisted growth method has provided a unique avenue for creation of nanostructures that are otherwise impossible to grow, and thus offered unprecedented opportunities for fundamental and applied research in nanoscale science and technology. In this article, we review recent progress in the application of the buffer layer-assisted growth method to the fabrication of Ge nanoclusters on Si substrates. In particular, we emphasize the novel configurations of the obtained Ge nanoclusters, which are characterized by the absence of a wetting layer, quasi-zero dimensionality with tunable sizes, and high cluster density in comparison with Ge nanoclusters that are formed with standard Stranski-Krastanov growth methods. The optical emission behaviors are discussed in correlation with the morphological properties

    Search for sterile neutrino oscillation using RENO and NEOS data

    Full text link
    We present a reactor model independent search for sterile neutrino oscillation using 2\,509\,days of RENO near detector data and 180 days of NEOS data. The reactor related systematic uncertainties are significantly suppressed as both detectors are located at the same reactor complex of Hanbit Nuclear Power Plant. The search is performed by electron antineutrino\,(Μ‟e\overline{\nu}_e) disappearance between six reactors and two detectors with baselines of 294\,m\,(RENO) and 24\,m\,(NEOS). A spectral comparison of the NEOS prompt-energy spectrum with a no-oscillation prediction from the RENO measurement can explore reactor Μ‟e\overline{\nu}_e oscillations to sterile neutrino. Based on the comparison, we obtain a 95\% C.L. excluded region of 0.1<∣Δm412∣<70.1<|\Delta m_{41}^2|<7\,eV2^2. We also obtain a 68\% C.L. allowed region with the best fit of ∣Δm412∣=2.41 ± 0.03 |\Delta m_{41}^2|=2.41\,\pm\,0.03\,\,eV2^2 and sin⁥22Ξ14\sin^2 2\theta_{14}=0.08 ± \,\pm\,0.03 with a p-value of 8.2\%. Comparisons of obtained reactor antineutrino spectra at reactor sources are made among RENO, NEOS, and Daya Bay to find a possible spectral variation.Comment: 6 pages, 5 figures: This manuscript has been significantly revised by the joint reanalysis by RENO and NEOS Collaborations. (In the previous edition, the RENO collaboration used publicly available NEOS data to evaluate the expected neutrino spectrum at NEOS.

    An Assessment of the Use of Chimpanzees in Hepatitis C Research Past, Present and Future: 1. Validity of the Chimpanzee Model

    Get PDF
    The USA is the only significant user of chimpanzees in biomedical research in the world, since many countries have banned or limited the practice due to substantial ethical, economic and scientific concerns. Advocates of chimpanzee use cite hepatitis C research as a major reason for its necessity and continuation, in spite of supporting evidence that is scant and often anecdotal. This paper examines the scientific and ethical issues surrounding chimpanzee hepatitis C research, and concludes that claims of the necessity of chimpanzees in historical and future hepatitis C research are exaggerated and unjustifiable, respectively. The chimpanzee model has several major scientific, ethical, economic and practical caveats. It has made a relatively negligible contribution to knowledge of, and tangible progress against, the hepatitis C virus compared to non-chimpanzee research, and must be considered scientifically redundant, given the array of alternative methods of inquiry now available. The continuation of chimpanzee use in hepatitis C research adversely affects scientific progress, as well as chimpanzees and humans in need of treatment. Unfounded claims of its necessity should not discourage changes in public policy regarding the use of chimpanzees in US laboratories

    CHERCAM: the Cherenkov imager of the CREAM experiment, results in Z=1 test beams

    No full text
    International audienceThe CREAM experiment investigates the high energy spectrum of nuclear elements from H to Fe in the cosmic ray flux up to 101510^{15} eV, with an instrument designed to achieve individual elements separation over the whole mass range. A proximity focused Cherenkov imager, CHERCAM (CHERenkov CAMera), will provide both a good topological signature (Cherenkov ring) for downgoing Z=1 particles, and a charge independent individual element separation through the considered range of nuclear charges. It will be implemented in the forthcoming CREAM flight 3. The contribution reports on the CHERCAM main features and on the preliminary results from in-beam tests at CERN
    • 

    corecore