312 research outputs found
Super Resolution Microscopy Reveals that Caveolin-1 Is Required for Spatial Organization of CRFB1 and Subsequent Antiviral Signaling in Zebrafish
10.1371/journal.pone.0068759PLoS ONE87-POLN
Bayesian molecular clock dating of species divergences in the genomics era
It has been five decades since the proposal of the molecular clock hypothesis, which states that the rate of evolution at the molecular level is constant through time and among species. This hypothesis has become a powerful tool in evolutionary biology, making it possible to use molecular sequences to estimate the geological ages of species divergence events. With recent advances in Bayesian clock dating methodology and the explosive accumulation of genetic sequence data, molecular clock dating has found widespread applications, from tracking virus pandemics, to studying the macroevolutionary process of speciation and extinction, to estimating a timescale for Life on Earth
Molecular phylogenetics and temporal diversification in the genus Aeromonas based on the sequences of five housekeeping genes
Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (γ-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process
Conservation genomic analysis reveals ancient introgression and declining levels of genetic diversity in Madagascar's hibernating dwarf lemurs
Basin-Scale Control on the Phytoplankton Biomass in Lake Victoria, Africa
The relative bio-optical variability within Lake Victoria was analyzed through the spatio-temporal decomposition of a 1997–2004 dataset of remotely-sensed reflectance ratios in the visible spectral range. Results show a regular seasonal pattern with a phase shift (around 2 months) between the south and north parts of the lake. Interannual trends suggested a teleconnection between the lake dynamics and El-Niño phenomena. Both seasonal and interannual patterns were associated to conditions of light limitation for phytoplankton growth and basin-scale hydrodynamics on phytoplankton access to light. Phytoplankton blooms developed during the periods of lake surface warming and water column stability. The temporal shift apparent in the bio-optical seasonal cycles was related to the differential cooling of the lake surface by southeastern monsoon winds. North-south differences in the exposure to trade winds are supported by the orography of the Eastern Great Rift Valley. The result is that surface layer warming begins in the northern part of the lake while the formation of cool and dense water continues in the southern part. The resulting buoyancy field is sufficient to induce a lake-wide convective circulation and the tilting of the isotherms along the north-south axis. Once surface warming spreads over the whole lake, the phytoplankton bloom dynamics are subjected to the internal seiche derived from the relaxation of thermocline tilting. In 1997–98, El-Niño phenomenon weakened the monsoon wind flow which led to an increase in water column stability and a higher phytoplankton optical signal throughout the lake. This suggests that phytoplankton response to expected climate scenarios will be opposite to that proposed for nutrient-limited great lakes. The present analysis of remotely-sensed bio-optical properties in combination with environmental data provides a novel basin-scale framework for research and management strategies in Lake Victoria
Primary cilia disappear in rat podocytes during glomerular development
Most tubular epithelial cell types express primary cilia, and mutations of primary-cilium-associated proteins are well known to cause several kinds of cystic renal disease. However, until now, it has been unclear whether mammalian podocytes express primary cilia in vivo. In this study, we determined whether primary cilia are present in the podocytes of rat immature and mature glomeruli by means of transmission electron microscopy of serial ultrathin sections. In immature glomeruli of fetal rats, podocytes express the primary cilia with high percentages at the S-shaped body (88 ± 5%, n = 3), capillary loop (95 ± 4%, n = 4), and maturing glomerulus (76 ± 13%, n = 5) stages. The percentage of ciliated podocytes was significantly lower at the maturing glomerulus stage than at the former two stages. In mature glomeruli of adult rats, ciliated podocytes were not found at all (0 ± 0%, n = 11). These findings indicate that the primary cilia gradually disappear in rat podocytes during glomerular development. Since glomerular filtration rate increases during development, the primary cilia on the podocytes are subjected to a stronger bending force. Thus, the disappearance of the primary cilia presumably prevents the entry of excessive calcium-ions via the cilium-associated polycystin complexes and the disturbance of intracellular signaling cascades in mature podocytes
Paleogene Radiation of a Plant Pathogenic Mushroom
Background: The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species. Methods: The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI). A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach. Results: Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana. Conclusions: The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our result
Small-scale coexistence of two mouse lemur species (Microcebus berthae and M. murinus) within a homogeneous competitive environment
Understanding the co-occurrence of ecologically similar species remains a puzzling issue in community ecology. The species-rich mouse lemurs (Microcebus spec.) are distributed over nearly all remaining forest areas of Madagascar with a high variability in species distribution patterns. Locally, many congeneric species pairs seem to co-occur, but only little detailed information on spatial patterns is available. Here, we present the results of an intensive capture–mark–recapture study of sympatric Microcebus berthae and M. murinus populations that revealed small-scale mutual spatial exclusion. Nearest neighbour analysis indicated a spatial aggregation in Microcebus murinus but not in M. berthae. Although the diet of both species differed in proportions of food categories, they used the same food sources and had high feeding niche overlap. Also, forest structure related to the spatial distribution of main food sources did not explain spatial segregation because parts used by each species exclusively did not differ in density of trees, dead wood and lianas. We propose that life history trade-offs that result in species aggregation and a relative increase in the strength of intra-specific over inter-specific competition best explain the observed pattern of co-occurrence of ecologically similar congeneric Microcebus species
Genomic insights into an obligate epibiotic bacterial predator: Micavibrio aeruginosavorus ARL-13
On the Origin and Trigger of the Notothenioid Adaptive Radiation
Adaptive radiation is usually triggered by ecological opportunity, arising
through (i) the colonization of a new habitat by its
progenitor; (ii) the extinction of competitors; or
(iii) the emergence of an evolutionary key innovation in
the ancestral lineage. Support for the key innovation hypothesis is scarce,
however, even in textbook examples of adaptive radiation. Antifreeze
glycoproteins (AFGPs) have been proposed as putative key innovation for the
adaptive radiation of notothenioid fishes in the ice-cold waters of Antarctica.
A crucial prerequisite for this assumption is the concurrence of the
notothenioid radiation with the onset of Antarctic sea ice conditions. Here, we
use a fossil-calibrated multi-marker phylogeny of nothothenioid and related
acanthomorph fishes to date AFGP emergence and the notothenioid radiation. All
time-constraints are cross-validated to assess their reliability resulting in
six powerful calibration points. We find that the notothenioid radiation began
near the Oligocene-Miocene transition, which coincides with the increasing
presence of Antarctic sea ice. Divergence dates of notothenioids are thus
consistent with the key innovation hypothesis of AFGP. Early notothenioid
divergences are furthermore congruent with vicariant speciation and the breakup
of Gondwana
- …
