217 research outputs found

    Ground-state properties of trapped Bose-Fermi mixtures: role of exchange-correlation

    Get PDF
    We introduce Density Functional Theory for inhomogeneous Bose-Fermi mixtures, derive the associated Kohn-Sham equations, and determine the exchange-correlation energy in local density approximation. We solve numerically the Kohn-Sham system and determine the boson and fermion density distributions and the ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the corrections due to exchange--correlation is discussed by comparison with current experiments; in particular, we investigate the effect of of the repulsive potential energy contribution due to exchange--correlation on the stability of the mixture against collapse.Comment: 6 pages, 4 figures (final version as published in Physical Review

    Suppression and enhancement of the critical current in multiterminal S/N/S mesoscopic structures

    Full text link
    We analyse the measured critical current ImI_{m\text{}} in a mesoscopic 4-terminal S/N/S structure. The current through the S/N interface is shown to consist not only of the Josephson component Icsinϕ,I_{c}\sin \phi , but also a phase-coherent part IsgcosϕI_{sg}\cos \phi of the subgap current. The current ImI_{m} is determined by the both components IcI_{c} and Isg,I_{sg}, and depends in a nonmonotonic way on the voltage VV between superconductors and normal reservoirs reaching a maximum at VΔ/eV\cong \Delta /e. The obtained theoretical resultas are in qualitative agreement with recent experimental data.Comment: 4 page, 3 figures. To be puplished in PRB Rapid co

    Two-fermion bound state in a Bose-Einstein condensate

    Full text link
    A nonlinear Schr\"odinger equation is derived for the dynamics of a beam of ultracold fermionic atoms traversing a Bose-Einstein condensate. The condensate phonon modes are shown to provide a nonlinear medium for the fermionic atoms. A two-fermion bound state is predicted to arise, and the signature of the bound state in a nonlinear atom optics experiment is discussed.Comment: 4 pages, 1 figure

    Superconducting fluctuation corrections to ultrasound attenuation in layered superconductors

    Full text link
    We consider the temperature dependence of the sound attenuation and sound velocity in layered impure metals due to superconducting fluctuations of the order parameter above the critical temperature. We obtain the dependence on material properties of these fluctuation corrections in the hydrodynamic limit, where the electron mean free path is much smaller than the wavelength of sound and where the electron collision rate is much larger than the sound frequency. For longitudinal sound propagating perpendicular to the layers, the open Fermi surface condition leads to a suppression of the divergent contributions to leading order, in contrast with the case of paraconductivity. The leading temperature dependent corrections, given by the Aslamazov-Larkin, Maki-Thompson and density of states terms, remain finite as T->Tc. Nevertheless, the sensitivity of new ultrasonic experiments on layered organic conductors should make these fluctuations effects measurable.Comment: 13 pages, 6 figures. Accepted for PRB. Added discussion on incoherent interlayer tunneling and other small modifications suggested by referee

    Fractional vortices on grain boundaries --- the case for broken time reversal symmetry in high temperature superconductors

    Full text link
    We discuss the problem of broken time reversal symmetry near grain boundaries in a d-wave superconductor based on a Ginzburg-Landau theory. It is shown that such a state can lead to fractional vortices on the grain boundary. Both analytical and numerical results show the structure of this type of state.Comment: 9 pages, RevTeX, 5 postscript figures include

    Nonlinear electrodynamics of p-wave superconductors

    Full text link
    We consider the Maxwell-London electrodynamics of three dimensional superconductors in p-wave pairing states with nodal points or lines in the energy gap. The current-velocity relation is then nonlinear in the applied field, cubic for point nodes and quadratic for lines. We obtain explicit angular and depth dependent expressions for measurable quantities such as the transverse magnetic moment, and associated torque. These dependences are different for point and line nodes and can be used to distinguish between different order parameters. We discuss the experimental feasibility of this method, and bring forth its advantages, as well as limitations that might be present.Comment: Fourteen pages RevTex plus four postscript figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    High pTp_{T} non-photonic electron production in pp+pp collisions at s\sqrt{s} = 200 GeV

    Get PDF
    We present the measurement of non-photonic electron production at high transverse momentum (pT>p_T > 2.5 GeV/cc) in pp + pp collisions at s\sqrt{s} = 200 GeV using data recorded during 2005 and 2008 by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured cross-sections from the two runs are consistent with each other despite a large difference in photonic background levels due to different detector configurations. We compare the measured non-photonic electron cross-sections with previously published RHIC data and pQCD calculations. Using the relative contributions of B and D mesons to non-photonic electrons, we determine the integrated cross sections of electrons (e++e2\frac{e^++e^-}{2}) at 3 GeV/c<pT< c < p_T <~10 GeV/cc from bottom and charm meson decays to be dσ(Be)+(BDe)dyeye=0{d\sigma_{(B\to e)+(B\to D \to e)} \over dy_e}|_{y_e=0} = 4.0±0.5\pm0.5({\rm stat.})±1.1\pm1.1({\rm syst.}) nb and dσDedyeye=0{d\sigma_{D\to e} \over dy_e}|_{y_e=0} = 6.2±0.7\pm0.7({\rm stat.})±1.5\pm1.5({\rm syst.}) nb, respectively.Comment: 17 pages, 17 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure
    corecore