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Ground-state properties of trapped Bose-Fermi mixtures: Role of exchange correlation
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We introduce density-functional theory for inhomogeneous Bose-Fermi mixtures, derive the associated
Kohn-Sham equations, and determine the exchange-correlation energy in local-density approximation. We
solve numerically the Kohn-Sham system, and determine the boson and fermion density distributions and the
ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the
corrections due to exchange correlation is discussed by a comparison with current experiments; in particular,
we investigate the effect of the repulsive potential-energy contribution due to exchange correlation on the
stability of the mixture against collapse.
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I. INTRODUCTION

The achievement of Bose-Einstein condensation
trapped, dilute alkali-metal gases@1# has stimulated a rapidly
growing activity in the field of ultracold, degenerate quantu
gases, aimed at a better understanding of fundamenta
pects of the quantum theory. In particular, recent experim
tal progresses have opened the way to the fascinating p
pect of realizing a BCS transition to superfluidity
ultracold, trapped Fermi gases.

Magnetically trapped fermions interact very weakly,
their spins are polarized in the direction of the trapping m
netic field, so that fermion-fermions-wave scattering is pre
vented by the Pauli principle. Cooling of the fermions
quantum degeneracy can then be efficiently achieved
mixing them with ultracold bosons. After the process of sy
pathetic cooling, the final phase of the system is a quan
degenerate Bose-Fermi mixture. Indeed, such a system
been recently realized experimentally@2–5#.

On the theoretical side, dilute Bose-Fermi mixtures ha
been studied in both homogeneous and confined geome
For homogeneous systems, recent work has addresse
problem of stability and phase separation@6#; the effect of
boson-fermion interactions on the dynamics@7#; and the
BCS transition induced on the fermions by the boso
fermion interactions@8#. The first correction to the ground
state energy beyond the mean-field approximation has b
determined analytically for homogeneous systems@9#. This
exchange-correlation term can be used for trapped system
the local-density approximation, i.e., when the interact
length scales are much smaller than the characteristic siz
the trapping potentials. This condition is naturally met in t
current experiments. Recent numerical work@10# confirms
the analytical findings in the corresponding regime for h
mogeneous systems.

For trapped systems, the theory has been developed in
mean-field approximation to determine the boson and
mion density profiles at zero temperature@11#, and the re-
lated properties of stability against phase separation and
lapse@12#. A mean-field approach has been also employed
calculate the critical temperature of Bose-Einstein conden
tion in a trapped mixture@13#. However, a description be
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yond mean field is needed either when the interaction par
eters are large, or to gain a very precise knowledge of
density profiles and the related properties of stability. In
present work, we determine the ground-state energy and
boson and fermion density profiles to second order in
boson-fermion scattering length for harmonically trapp
Bose-Fermi mixtures at zero temperature, and determine
modification, due to the resulting exchange-correlation
ergy, of the mean-field predictions.

The plan of the paper is the following. In Sec. II, w
briefly show how to apply density-functional theory~DFT!
@14# to inhomogeneous boson-fermion systems, and we
termine the exchange-correlation energy functional via loc
density approximation~LDA ! on the ground-state energ
functional of homogeneous mixtures beyond mean field
tained in Ref.@9#. In Sec. III, we provide the numerical so
lution of the coupled, nonlinear Kohn-Sham equations
the boson and fermion density distributions, and we de
mine the importance of the corrections due to exchange
relation by comparing our results with current experimen
In Sec. IV, we discuss the effect of the exchange-correla
energy term on the phase diagram of the mixture, espec
regarding the onset of collapse for mixtures with attract
boson-fermion interaction.

II. THEORY

We begin by considering a inhomogeneous, dilute sys
of interacting bosons and spin-polarized fermions with tw
body interactions in thes-wave scattering approximation, s
that the interparticle potentials areUBB(ur2r 8u)5gBBd(r
2r 8), UFF(ur2r 8u)50, and UBF(ur2r 8u)5gBFd(r2r 8).
The boson-boson coupling isgBB54p\2aBB /mB , where
aBB is the boson-bosons-wave scattering length andmB is
the boson mass. The boson-fermion coupling readsgBF
52p\2aBF /mR , where aBF is the boson-fermions-wave
scattering length andmR5mBmF /(mB1mF) is the reduced
mass (mF is the fermion mass!. The full Hamiltonian reads

Ĥ5T̂B1T̂F1V̂B1V̂F1ŴBB1ŴBF , ~1!

where
©2003 The American Physical Society06-1
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T̂B52E drF̂†~r !
\2

“

2

2mB
F̂~r !; V̂B5E drF̂†~r !VBF̂~r !,

T̂F52E drĈ†~r !
\2

“

2

2mF
Ĉ~r !; V̂F5E drĈ†~r !VFĈ~r !,

ŴBB5
1

2E E drdr 8F̂†~r !F̂†~r 8!UBBF̂~r 8!F̂~r !,

ŴBF5E E drdr 8F̂†~r !Ĉ†~r 8!UBFĈ~r 8!F̂~r !. ~2!

Here,T̂B andT̂F denote the boson and fermion kinetic ene
gies, VB(r ) and VF(r ) denote the boson and fermion tra
ping potentials, andF̂(r ) andĈ(r ) represent the boson an
fermion field operators.

Let the ground state of the system beug&, and introduce

the ground-state energyE05
def

^guĤug&, and the boson and

fermion densities nB(r )5
def

^guF̂†(r )F̂(r )ug& and nF(r )

5
def

^guĈ†(r )Ĉ(r )ug&. The Hohenberg-Kohn theorem@14#
guarantees that, given the interaction potentials, the grou
state energy depends only on the densities, i.e., it is a fu
tional E05E0@nB ,nF#. The theorem was proved originall
for Fermi systems, but its generalization to Bose systems
to Bose-Fermi mixtures is straightforward. Determination
the density distributions follows by imposing the stationar
conditions

dE0@nB ,nF#
dnB~r ! 5

!
mF ;

dE0@nB ,nF#
dnF~r ! 5

!
mB , ~3!

wheremB and mF are the boson and fermion chemical p
tentials, respectively.

In general, the functionalE0@nB ,nF# cannot be deter-
mined exactly, but we can follow the Kohn-Sham proced
@14# to introduce accurate approximations. The idea is
map the interacting systems of interest to a noninterac
reference system with the same density distributio

nB(r )°nB
ref(r )5

!
nB(r );nF(r )°nF

ref(r )5
!

nF(r ). Uniqueness
of the mapping follows from the Hohenberg-Kohn theore
and we find

E05TB
ref@nB ,nF#1TF

ref@nB ,nF#1E drVBnB1E drVFnF

1
gBB

2 E drnB
21gBFE drnBnF1Exc@nB ,nF#, ~4!

where the first two terms are the kinetic energies of the
erence system, the next two terms are the trapping ener
and the fifth and sixth terms are the mean-field part of
interaction energy. The last term includes all the contrib
tions to the interaction energy beyond mean field due to
change correlations, and defines the exchange-correlatio
ergy functionalExc@nB ,nF#. If Exc is neglected altogether
one simply recovers the equations of mean-field theory
trapped Bose-Fermi mixtures@11,12#.
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We now proceed to carry out the full Kohn-Sham sche
to determine the ground-state energy, and the boson and
mion density profiles beyond mean field. In the Kohn-Sh
reference system, the kinetic parts of the energy functio
TB

ref@nB ,nF# for the bosons andTF
ref@nB ,nF# for the fermions

are defined as

TB
ref@nB ,nF#52NBE d3rf* ~r !

\2
“

2

2mB
f~r !,

TF
ref@nB ,nF#52(

i 51

NF E d3rc i* ~r !
\2

“

2

2mF
c i~r !, ~5!

whereNB and NF are the total numbers of bosons and fe
mions, and the notationsf(r ) and c i(r ) are shorthand for
the boson and fermion functional orbitalsf@nB ,nF#(r ) and
c i@nB ,nF#(r ) of the noninteracting reference system, r
spectively. Substituting Eqs.~5! into Eq.~4! and carrying out
the functional derivatives in Eqs.~3!, we obtain a system o
coupled, effective Schro¨dinger equations for the single
particle states that are the desired Kohn-Sham equations
Bose-Fermi system:

F2
\2

“

2

2mB
1VB1

4p\2aBB

mB
nB1

2p\2aBF

mR
nF1

dExc

dnB
Gf

5mBf,

F2
\2

“

2

2mF
1VF1

2p\2aBF

mR
nB1

dExc

dnF
Gc i5e ic i , ~6!

with nB(r )5NBuf(r )u2, nF(r )5( i 51
NF uc i(r )u2, where the

sum innF(r ) runs over theNF single-particle statesc i with
lowest energiese i . We now resort to LDA by approximating
Exc with an integral over the exchange-correlation ene
densityExc

hom
„nB(r ),nF(r )… of a homogeneous system take

at the—yet unknown—densitiesnB(r ) andnF(r ):

Exc@nB ,nF#'E drExc
hom~nB ,nF!. ~7!

With this identification, functional derivatives become ord
nary partial derivatives:

dExc

dnB
5

]Exc
hom

]nB
;

dExc

dnF
5

]Exc
hom

]nF
. ~8!

The homogeneous exchange-correlation energy densityExc
hom

has been recently determined@9# to second order in the
boson-fermion scattering lengthaBF via aT-matrix approach
analog of the Beliaev expansion for a pure Bose system@15#,
and its expression reads@9#

Exc
hom~nB ,nF!5

2\2aBF
2

mR
f ~d!kFnFnB , ~9!
6-2
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wherekF5(6p2nF)1/3 is the Fermi wave vector, andf (d) is
a dimensionless function that depends only on the boson
fermion masses:

f ~d!512
31d

4d
1

3~11d!2~12d!

8d2
ln

11d

12d
, ~10!

with d5(mB2mF)/(mB1mF). Viverit and Giorgini have
recently shown@10# that Eq.~9! is exact in the limitkFjB

@1, wherejB51/A8pnBaBB is the boson healing length. I
order of magnitude, the homogeneous densities arenF
'NF /,3 and nB'NB /,3, where , is the characteristic
length of the confining potential. The conditionkFjB@1 is
then equivalent toNF@NB

3/2(aBB /,)3/2. On the other hand
LDA is correct for large NB and NF , provided that,
@aBB ,aBF , i.e., the characteristic lengths of the confini
potentials are much larger than the scattering leng
In current experimentsNF'NB'104 and aBF /,'aBB /,
'1023, so that the conditionkFjB@1 is well satisfied.
Moreover, the boson-boson exchange-correlation energ
256\2aBBnB

2ApnBaBB
3 /15mB ~see, e.g., Ref.@15#!. This is

much smaller than the exchange-correlation energy~9! if
NF@5.4(aBB /aBF)3/2(aBB /,)3/8@(12d)/ f (d)#NB

9/8. Since
aBB /aBF50.13 for the Paris experiment with6Li- 7Li @3# and
aBB /aBF50.28 for the Florence experiment with40K-87Rb
@5# ~these are the only two experiments whereaBF has been
measured!, this condition is satisfied as well. Yet othe
higher-order terms are due to direct Fermion-Ferm
p-wave scattering. These terms are at least of the orde
(kFaFF)3, whereaFF is the Fermion-Fermionp-wave scat-
tering length, and thus certainly negligible against the te
we consider. Altogether, Eq.~9! provides the most relevan
contribution to the exchange-correlation energy for the c
rent experimental situations. For more general situations,
~9! provides the most relevant contribution beyond me
field any time LDA is satisfied,NF is comparable or large
than NB in order of magnitude, and perturbation theo
holds, i.e.,kFaBF /p!1, and a sufficiently small Bose ga
parameter.

We now consider the Kohn-Sham system~6! with the
exchange-correlation energy~9! for spherically symmetric,
harmonically trapped systems:VB(r )5(mBvB

2r 2)/2, VF(r )
5(mFvF

2r 2)/2. Due to the spherical symmetry, we can wr

f~r !5
u~r !

r
Y00; cnlm~r !5

unl~r !

r
Ylm , ~11!

whereYlm(Q,F) are the spherical harmonics, and the Koh
Sham equations~6! become

F2
1

2mB

d2

dr2
1

mB

2
vB

2r 21
4paBB

mB
nB~r !1

2paBF

mR
nF~r !

1
2aBF

2 f ~d!

mR
nF~r !kF~r !Gu~r !5mBu~r !;
06360
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F2
1

2mF

d2

dr2
1

l ~ l 11!

2mFr 2
1

mF

2
vF

2r 21
2paBF

mR
nB~r !

1
8aBF

2 f ~d!

3mR
nB~r !kF~r !Gunl~r !5enlunl~r !, ~12!

with *dru2(r )51,*drunl
2 (r )51, wheren denotes the num-

ber of nodes of the radial functionsunl . The normalized
density distributions ñB(r )54pr 2nB(r ) and ñF(r )
54pr 2nF(r ) are

ñB~r !5NBu2~r !, ~13!

and

ñF~r !5 (
enl<mF

~2l 11!unl
2 ~r !. ~14!

III. SOLUTION OF THE KOHN-SHAM EQUATIONS

The above expressions together with Eqs.~12! define a
system of coupled nonlinear differential equations. The
merical solution is obtained iteratively. We initializenB(r )
andnF(r ) to be the Thomas-Fermi density distributions wi
no boson-fermion coupling. We then use these as initial d
sities for Eqs.~12!. The energy eigenvalues are found by
bisection algorithm, iterating the procedure to the desi
degree of accuracy. Knowing the statesu andunl , one must
determine the wave functionunl with lowest energyenl using
the fact thatenl grows withn and l. When all the occupied
Kohn-Sham states are determined, the output densities
compared to the initial distributions. If these are about
same, a self-consistent solution is reached, and the proce
ends. If not, one defines a convex combination of the ini
and output densities,nB(F)

new (r )5(12x)nB(F)
init ial 1xnB(F)

output,
with 0,x<1, and iterates the procedure until convergen
is reached with the desired degree of accuracy. IfNF is large,
the procedure is very time consuming and limited by a ma
mum number of nodes that can be included. One then ad
a Thomas-Fermi approximation for the fermion kinetic e
ergy, wheneverNF>1000, and finds a posteriori a very goo
agreement with the single-particle description.

A comparison of our results with current experiments c
be carried out for those systems whose boson-fermion s
tering length has been measured. These are the6Li-7Li mix-
tures realized in the Paris experiment@3#, and the40K-87Rb
recently realized in the Florence experiment@5#. In the Paris
experiment with fermionic6Li and bosonic7Li, the mea-
sured scattering lengths areaBB55.1a0 and aBF538.0a0,
wherea0 is the Bohr radius. TakingvB as the unit of fre-
quency, the exchange-correlation energy turns out to
'50\vB , whereas the mean-field boson-fermion interact
energy is'7455\vB . Thus, only about 0.67% of the inter
action energy is due to exchange correlations, it has the s
sign of the mean-field energy, and the modification of t
mean-field density profiles is negligible.

The situation is very different for the mixture of fermion
40K and bosonic87Rb realized in the Florence experimen
6-3
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due to the large and negative boson-fermion scattering le
giving rise both to a large attractive mean-field boso
fermion interaction potential and to a non-negligib
exchange-correlation potential. The latter, being proportio
to the square of the boson-fermion scattering length, is
ways repulsive. For this experiment, a typical stable confi
ration is achieved forNF5104, NB523104. The boson-
boson scattering length isaBB5100a0, while the boson-
fermion scattering lengthaBF'2400a0 is measured with an
uncertainty of about 50%. The mean-field interaction ene
is '298165\vB , while the exchange-correlation energy
'6783\vB . Thus, the relative correction in the interactio
energy is about 7% of the mean-field result, going in
opposite direction, and leads to a pronounced effect on
density profiles. Both the boson and fermion densities spr
out and decrease substantially at the center of the trap
respect to the mean-field prediction, due to the repuls
exchange-correlation potential. This effect is shown in Fi
1 and 2, where we show the boson and fermion density

FIG. 1. The boson density profile for the Florence experime
Dashed line: without exchange correlations; solid line: with e
change correlations. Quantities are dimensionless, rescaled in
of ,5(\/mBvB)1/2.

FIG. 2. The fermion density profile for the Florence experime
Dashed line: without exchange correlations; solid line: with e
change correlations. Quantities are dimensionless, rescaled in
of ,5(\/mBvB)1/2.
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tributions with and without exchange correlations, calcula
with the parameters fixed at the values measured in the
rence experiment. At the center of the trap, the boson
fermion densities are reduced, respectively, to about 8
and 78% of the mean-field result.

IV. STABILITY AND COLLAPSE

In general, there are two kinds of instabilities in a bina
mixture ~we do not consider instabilities due to fermion pa
ing!: demixing @11# and simultaneous collapse of both th
boson and the fermion component@16#. The first can occur if
the interaction between the two species is repulsive, and
plies by definition a minimal overlap of the density distrib
tions. In this case, we do not expect a significant change
the phase diagram by repulsive exchange-correlation inte
tions, but only for a small enhancement of the pha
separation.

In the collapse regime, which can occur if the interacti
between the two species is attractive, the situation is ra
cally different, as in this case one has indeed a very h
overlap of the densities in the center of the trap. T
exchange-correlation interaction, which is always repuls
to second order in the boson-fermion scattering length,
poses the propensity to collapse due to the attractive m
field contribution. If the coupling strength between the tw
components of the mixture is sufficiently strong, th
exchange-correlation can significantly modify the pha
diagram.

In Fig. 3, we provide the mean-field phase diagram o
binary boson-fermion mixture, with the physical paramet
of the Florence experiment@17#. The plot shows the behavio
of the critical number of bosonsNB

cr, i.e., the threshold num
ber for the onset of collapse, as a function of the numbe
fermionsNF . Collapse occurs at any point of the phase pla
above the critical curve, while the mixture is stable at
points below it. For low fermion numbersNF<83103, the
critical number of bosonsNB

cr begins to grow so fast that to
all practical purposes collapse is inhibited. The inversion
gime between the number of fermions and the critical nu

t.
-
its

.
-
its

FIG. 3. The critical number of bosonsNB
cr for the onset of col-

lapse as a function of the number of fermionsNF in the mean-field
approximation.
6-4
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ber of bosons takes place atNF.NB
cr.53104. For a typical

number of fermionsNF.23104, one has a critical boson
number NB

cr.73104. The situation in the mean-field ap
proximation is to be compared with the prediction obtain
by including exchange correlation. Figure 4 shows the sa
phase diagram as in Fig. 3, but with the inclusion of e
change correlation. We clearly see a significant increas
the critical number of the bosons due to exchange corr
tion. The inversion regime between the number of fermio
and the critical number of bosons takes place atNF.NB

cr

.1.23105, and for a typical fermion numberNF.23104

the critical boson numberNB
cr.1.53105, i.e., a much larger

number of bosons is needed to produce a collapse of
fermion component. This behavior was qualitatively e
pected since the effective exchange-correlation potentials
always repulsive to second order in the boson-fermion s
tering length.

The quantitative difference between the mean-field a
the exchange-correlation phase diagrams deserves som
planatory comments. First of all, the determination of t
critical line for simultaneous collapse takes place in a reg
where the numerics is very sensitive to small deviations
the input parameters. Thus, when a stable solution is
found, this could be ascribed either to the fact that the ph
cal collapse regime was reached or to an inappropriate
merical precision. However, by increasing the numerical p
cision, computation time rapidly increases as well. On
other hand, if a stable numerical solution is found, there
certainly be no physical collapse. The critical curves
present are then lower bounds on the critical numbers.

FIG. 4. The critical number of bosonsNB
cr for the onset of col-

lapse as a function of the number of fermionsNF including ex-
change correlation.
r-
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remark that the mixture is very sensitive to the exact value
the boson-fermion scattering length in the collapse regim
Since this value is experimentally known with a large unc
tainty, it would be crucial to determine it with a much great
precision. This could be achieved by tuning the scatter
length in order to fit the experimental data on the onset
collapse@18#. Moreover, for large interaction strengths, su
as that in the Florence experiment, the second-order term
the exchange-correlation energy might overestimate the
fect of stabilization. In fact, in these cases, the attract
third-order term could possibly give rise to a non-negligib
contribution, so that the mean-field critical line of Fig. 3 a
the second-order critical line of Fig. 4 would provide, respe
tively, a lower and an upper bound. The true phase diag
would, therefore, lie in between the two. A more detail
analysis than that provided in the present paper requi
however, analytical expressions of the third-order interact
energy in powers ofkFaBF , and this is a formidable task
because Feynman diagrams containing all possible comb
tions of Boson-Fermion and Boson-Boson interactions h
to be considered. These effects cannot be simply determ
by resumming restricted classes of equivalent diagrams.
nally, to go beyond second-order perturbation theory
quires, for consistency, to take into account interaction p
cesses beyonds-wave scattering, such asp-wave scattering,
thus introducing powers of, e.g., thep-wave Boson-Fermion
scattering length, and the description soon becomes exc
ingly complex in the framework of perturbation theory. No
perturbative methods, such as Monte Carlo simulatio
would then be desirable to establish more accurate resu

In conclusion, we have introduced the Kohn-Sha
scheme of DFT for inhomogeneous Bose-Fermi system
determine the ground-state energy and density profiles
second order in the boson-fermion scattering length. We h
compared the theoretical predictions with current expe
ments, discussed the relevance of different exchan
correlation terms, and investigated the importance of
exchange-correlation effects for dilute atomic gases. We h
shown that these are substantial for systems, such
40K-87Rb, with a large attractive boson-fermion interactio
especially in the critical regime of collapse onset, by co
paring the mean-field phase diagram with the exchan
correlation phase diagram. The DFT method outlined h
can be, in principle, extended to include higher-order corr
tions and finite temperature effects.
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on an earlier draft of our work, and for stimulating conve
sations. A.A. and M.W. thank the DFG and the ESF for
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