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Ground-state properties of trapped Bose-Fermi mixtures: Role of exchange correlation
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We introduce density-functional theory for inhomogeneous Bose-Fermi mixtures, derive the associated
Kohn-Sham equations, and determine the exchange-correlation energy in local-density approximation. We
solve numerically the Kohn-Sham system, and determine the boson and fermion density distributions and the
ground-state energy of a trapped, dilute mixture beyond mean-field approximation. The importance of the
corrections due to exchange correlation is discussed by a comparison with current experiments; in particular,
we investigate the effect of the repulsive potential-energy contribution due to exchange correlation on the
stability of the mixture against collapse.
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[. INTRODUCTION yond mean field is needed either when the interaction param-
eters are large, or to gain a very precise knowledge of the
The achievement of Bose-Einstein condensation irdensity profiles and the related properties of stability. In the
trapped, dilute alkali-metal gasgg| has stimulated a rapidly present work, we determine the ground-state energy and the
growing activity in the field of ultracold, degenerate quantumboson and fermion density profiles to second order in the
gases, aimed at a better understanding of fundamental aBoson-fermion scattering length for harmonically trapped
pects of the quantum theory. In particular, recent experimenBose-Fermi mixtures at zero temperature, and determine the
tal progresses have Opened the Way to the fascinating proglod|f|cat|0n, due to the I‘esultlng eXChange-COfrelanOﬂ en-
pect of realizing a BCS transition to superfluidity in €rgy. of the mean-field predictions.
ultracold, trapped Fermi gases. The plan of the paper is the following. In Sec. II, we
Magnetically trapped fermions interact very weakly, asPriefly show how to apply density-functional theofpFT)
their spins are polarized in the direction of the trapping magi14] to inhomogeneous boson-fermion systems, and we de-
netic field, so that fermion-fermioswave scattering is pre- termine the exchange-correlation energy functional via local-
vented by the Pauli principle. Cooling of the fermions to density approximationLDA) on the ground-state energy
quantum degeneracy can then be efficiently achieved bfpnctional of homogeneous mixtures beyond mean field ob-
mixing them with ultracold bosons. After the process of sym-tained in Ref[9]. In Sec. IIl, we provide the numerical so-
pathetic cooling, the final phase of the system is a quanturf¥tion of the coupled, nonlinear Kohn-Sham equations for
degenerate Bose-Fermi mixture. Indeed, such a system h¢ boson and fermion density distributions, and we deter-
been recently realized experimentaB-5. mine the importance of the corrections due to exchange cor-
On the theoretical side, dilute Bose-Fermi mixtures haveelation by comparing our results with current experiments.
been studied in both homogeneous and confined geometrid. Sec. IV, we discuss the effect of the exchange-correlation
For homogeneous systems, recent work has addressed tR@ergy term on the phase diagram of the mixture, especially
problem of stability and phase separati@]; the effect of regarding the qnset of_ collapse for mixtures with attractive
boson-fermion interactions on the dynamicg; and the boson-fermion interaction.
BCS transition induced on the fermions by the boson-

fermion interactiong8]. The first correction to the ground- Il. THEORY
state energy beyond the mean-field approximation has been . o ) ,
determined analytically for homogeneous systé8is This We begin by considering a inhomogeneous, dilute system

exchange-correlation term can be used for trapped systems {f intéracting bosons and spin-polarized fermions with two-
the local-density approximation, i.e., when the interactionP@dy interactions in the-wave scattering approximation, so
length scales are much smaller than the characteristic sizes Bfat the interparticle potentials atdgg(|r —r'[) = ggsd(r
the trapping potentials. This condition is naturally met in the ") Uge(lr=r'[)=0, and !JBF(Ir—r’l)ngpﬁ(r—r’).
current experiments. Recent numerical w§ld] confirms ~ The boson-boson coupling iggg=47#"agg/mg, where
the analytical findings in the corresponding regime for ho-8es iS the boson-bosos-wave scattering length anug is
mogeneous systems. the boson mass. The boson-fermion coupling reggs
For trapped systems, the theory has been developed in tie27%i°agr /Mg, where age is the boson-fermiors-wave
mean-field approximation to determine the boson and ferscattering length anthg=mgmeg/(mg+me) is the reduced
mion density profiles at zero temperatytdl], and the re- Mmass (g is the fermion mags The full Hamiltonian reads
lated properties of stability against phase separation and col- o R
lapse[12]. A mean-field approach has been also employed to H=Tg+Tg+Vg+Ve+Wgg+WgE, @
calculate the critical temperature of Bose-Einstein condensa-
tion in a trapped mixtur¢13]. However, a description be- where
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. . . . We now proceed to carry out the full Kohn-Sham scheme
O(r); VB:J drdT(r)Ved(r), to determine the ground-state energy, and the boson and fer-
mion density profiles beyond mean field. In the Kohn-Sham
reference system, the kinetic parts of the energy functional
W (r); \7sz dréT(nVew(r),  T¥Tng,ng] for the bosons and@™®[ ng,ng] for the fermions
are defined as

h2V?
2mg

Tg=— f drd(r)

h2v?
2mg

Te=— f drdf(r)

WBB=EJ fdrdr'ciﬂ(r)ciﬂ(r’)UBBcb(r')cb(r), . 2y 2

2 Tere[nanF]:_NBf drp* (r) 2mg (1),

WBF=ffdrdr’<i>*(r>\if*<r')uBFﬁf<r'>é><r>. @ N h2v2
TElng.nel==2 | dryf (N5 -, 6

Here,Tg and Tr denote the boson and fermion kinetic ener-
gies, Vg(r) and V(r) denote the boson and fermion trap-
ping potentials, anef)(r) and\if(r) represent the boson and
fermion field operators.

Let the ground state ofdttle system [zg, and introduce

whereNg and Ng are the total numbers of bosons and fer-
mions, and the notationg(r) and ;(r) are shorthand for
the boson and fermion functional orbitadg ng ,ng](r) and
of il ng,ng](r) of the noninteracting reference system, re-
the ground-state energi,=(g|H|g), and the boson and spectively. Substituting Eq$5) into Eq.(4) and carrying out

] - def .. . the functional derivatives in Eq$3), we obtain a system of
Lgfrmlon densities ng(r)=(g|®'(r)®(r)[g) and ne(r)  coupled, effective Schitinger equations for the single-
:<g|xiﬁ(r)xir(r)|g>_ The Hohenberg-Kohn theoreri4] particle states that are the desired Kohn-Sham equations for a
guarantees that, given the interaction potentials, the ground®0se-Fermi system:
state energy depends only on the densities, i.e., it is a func-

tional Eo=Ey[ng,ng]. The theorem was proved originally h2v? Amhlagg 2mhlage OE¢
for Fermi systems, but its generalization to Bose systems and | 2mg +Ve Mg Ng+ Mg e+ Sng ¢
to Bose-Fermi mixtures is straightforward. Determination of
the density distributions follows by imposing the stationarity = ugd,
conditions
2¢72 2
6E0[nB,nF] ! . 5EO[nB ,nF] ! {_ ﬁ V +VF+ Zth aBFnB+ 5EXC wizei lr/li y (6)
Tong(r)  MFT Tene(r) - Me: (€©) 2mg mg oNng

where ug and ur are the boson and fermion chemical po- with ng(r)=Ng|¢(r)|?, nF(r)=2iN:FI|¢i(r)|2, where the
tentials, respectively. sum inng(r) runs over theNg single-particle stateg; with

In general, the functionaEq[ng,ne] cannot be deter- |owest energies; . We now resort to LDA by approximating
mined exactly, but we can follow the Kohn-Sham procedureg,  with an integral over the exchange-correlation energy

[14] to introduce accurate approximations. The idea is tQjensityEQé’m(nB(r),np(r)) of a homogeneous system taken

map the interacting systems of interest to a noninteracting; the—yet unknown—densitiess(r) andng(r):
reference system with the same density distributions:
| }

ref ref

ng(r)—ng (r)=ng(r);ng(r)—ng'(r)=ng(r). Unigueness
01?(th)e maBp(pi)ng fc?l(loz/vstﬁo)m ch (Hz)henFt()e)rg-Koh?] theorem, ExdNe ,np]~f drENC™ng,ng). (7)
and we find
With this identification, functional derivatives become ordi-
EozTgef[nB,nF]+TrFEf[nB,nF]+J' drVBnB+f drVeng nary partial derivatives:

hom hom
UsB 2 5EXC _ aExc i 5Exc _ aExc
+7f drnB+gBFJ drngng+E,J ng,ne], (4) R (8)

where the first two terms are the kinetic energies of the reftpe homogeneous exchange-correlation energy delﬁ%fﬂ}
erence system, the next two terms are the trapping energigsss peen recently determing@] to second order in the
and the fifth and sixth terms are the mean-field part of th,,son-fermion scattering lengéhyr via a T-matrix approach
interaction energy. The last term includes all the contribu—‘,inmOg of the Beliaev expansion for a pure Bose sy$ish
tions to the interaction energy beyond mean field due to exzpq its expression reads]
change correlations, and defines the exchange-correlation en-

ergy functionalE,J ng,ng]. If E,. is neglected altogether, 25232

one simply recovers the equations of mean-field theory for Eh°m(nB NE)= BFf(é)anFnB, 9)
trapped Bose-Fermi mixturd41,17. X Mg
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wherekg= (67°ng) Y3 is the Fermi wave vector, arfd 8) is 1 d 10+1) m Ta
a dimensionless function that depends only on the boson and — — - §r2+ BFnB(r)
fermion masses: 2Me dr? - 2mer? - 2 R
8a3:f (o)
f(5)=1 3+5+3(1+5)2(1—5) 1+6 10 +3—mRnB(r)kF(r) Uni(r) = €nni(r), (12
(0=1"75 852 s (0

with fdru?(r)=1,fdru?(r)=1, wheren denotes the num-
with 6=(mg—mg)/(mg+mg). Viverit and Giorgini have ber of nodes of the radial functions, . The normalized
recently showr{10] that Eq.(9) is exact in the limitkp&g density distributions ﬁB(r)=47rr2nB(r) and ﬁ,:(r)
>1, whereég=1/\/8mngagg is the boson healing length. In =47r°ng(r) are
order of magnitude, the homogeneous densities rare -
~Ng /€% and ng~Ng/¢3, where ¢ is the characteristic ng(r)=Ngu?(r), 13
length of the confining potential. The conditibpég>1 is
then equivalent toNg>N¥¥agg/¢)32 On the other hand, 2"d
LDA is correct for largeNg and Ng, provided that¢

>agp,ape, i.€., the characteristic lengths of the confining Ne(r)= X, (21+1)ud(r). (14)
potentials are much larger than the scattering lengths. EnISHF

In current experimentdNg~Ng~10* and agr/¢{~agg/{

~10 3, so that the conditiorkpég>1 is well satisfied. [ll. SOLUTION OF THE KOHN-SHAM EQUATIONS

Moreover, the boson-boson exchange-correlation energy is
2561 %aggn3\/mngasg/15mg (see, e.g., Ref[15]). This is
much smaller than the exchange-correlation eng@yif
Ne>5.4(ags/age) ¥ ags/€) ¥ (1— 8)/f(8)INYE.  Since
agg/agr=0.13 for the Paris experiment wiftLi- 'Li [3] and
agg/age=0.28 for the Florence experiment withK-8Rb

The above expressions together with EG2) define a
system of coupled nonlinear differential equations. The nu-
merical solution is obtained iteratively. We initializgy(r)
andng(r) to be the Thomas-Fermi density distributions with
no boson-fermion coupling. We then use these as initial den-
; sities for Eqs.(12). The energy eigenvalues are found by a
[5] (these are the only two experiments whegg has been isaction algorithm, iterating the procedure to the desired

measuref] this condition is satisfied as well. Yet other degree of accuracy. Knowing the stateandu,,, one must
. . . . . nl»
higher-order t_erms are due to direct Fermion-Fermio etermine the wave functiany, with lowest energy,,, using
p-wave scattering. These terms are at least of the order

K 3 wh is the Fermion-Fermi Fhe fact thate,, grows withn andl. When all the occupied
(krapg)”, whereage is the Fermion-Fermiop-wave scat-  ohn sham states are determined, the output densities are
tering length, and thus certainly negligible against the termy,, a6 1o the initial distributions. If these are about the
we consider. Altogether, Eq9) provides the most relevant g6 ‘5 self-consistent solution is reached, and the procedure
contribution to the exchange-correlation energy for the cur

rent experimental situations. For more general situations E(;:nds. If not, one defines a convex combination of the initial
. : A ' =dnd output densities neE(r) = (1—x)ng(es +xngiht,
(.9) prowdgs the most rgle_vant c_ontrlbut|on beyond Meanyith 0<x=1, and iterates the procedure until convergence
field any time LDAis Sat'Sf'.edNF is comparable or larger is reached with the desired degree of accuradylis large
Lhoa;(rj]sNiiBemk c:irde/r (21mazlignrgttéd;;fﬁggntpl)er;l:rr]l;ﬁtlggséhegrsy the procedure is very time consuming and limited by a maxi-
paran’1e.te'r' FeeRTTE y 9385 mum number of nodes that can be included. One then adopts
We now consider the Kohn-Sham systd8) with the a Thomas-Fermi approximation for the fermion kinetic en-

exchange-correlation enerd$) for spherically symmetric, ergy, wheneveN;= 1000, and finds a posteriori a very good

; o 2% agreement with the single-particle description.
harmomzcglly trapped systemV.B_(r)—(mbBr )12, Ve(r) A comparison of our results with current experiments can
=(Mgwgr<)/2. Due to the spherical symmetry,

We can Writé pe carried out for those systems whose boson-fermion scat-
tering length has been measured. These arélthéLi mix-

u(r) Up(1) tures realized in the Paris experimgsi, and the*’K-8'Rb
¢()=——Yoo: ¥aim()=—"—Yim, (1D recently realized in the Florence experimghi In the Paris
experiment with fermionic®Li and bosonic’Li, the mea-
sured scattering lengths aegg=>5.1a, and agg=38.08,
wherea, is the Bohr radius. Takingg as the unit of fre-
quency, the exchange-correlation energy turns out to be
~50k wg, Whereas the mean-field boson-fermion interaction

whereY,,,(®,®) are the spherical harmonics, and the Kohn-
Sham equation&) become

1 d®> mg ,, Amags 2magg energy is~ 7455 wg. Thus, only about 0.67% of the inter-
©2mg gr? TRt Mg ng(r)+ Mg ne(r) action energy is due to exchange correlations, it has the same
sign of the mean-field energy, and the modification of the
2aéFf(5) mean-field density profiles is negligible.
m—RnF(r)kF(r) u(r)=ugu(r); The situation is very different for the mixture of fermionic

4% and bosonic®’Rb realized in the Florence experiment,
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FIG. 1. The boson density profile for the Florence experiment. FIG. 3. The critical number of bosomé’ for the onset of col-
Dashed line: without exchange correlations; solid line: with ex-lapse as a function of the number of fermidws in the mean-field
change correlations. Quantities are dimensionless, rescaled in unigproximation.
of £=(h/mgwg)*2

tributions with and without exchange correlations, calculated
due to the large and negative boson-fermion scattering lengtith the parameters fixed at the values measured in the Flo-
giving rise both to a large attractive mean-field boson-rence experiment. At the center of the trap, the boson and
fermion interaction potential and to a non-negligible fermion densities are reduced, respectively, to about 85%
exchange-correlation potential. The latter, being proportionaind 78% of the mean-field result.
to the square of the boson-fermion scattering length, is al-

ways repulsive. For this experiment, a typical stable configu- IV. STABILITY AND COLLAPSE
ration is achieved foNg=10, Ng=2x10*. The boson- '
boson scattering length iagg=1008,, while the boson- In general, there are two kinds of instabilities in a binary

fermion scattering lengthge~ — 400g, is measured with an mixture (we do not consider instabilities due to fermion pair-
uncertainty of about 50%. The mean-field interaction energyng): demixing[11] and simultaneous collapse of both the
is ~—9816%iwg, While the exchange-correlation energy is boson and the fermion compong®]. The first can occur if
~6783%wg. Thus, the relative correction in the interaction the interaction between the two species is repulsive, and im-
energy is about 7% of the mean-field result, going in theplies by definition a minimal overlap of the density distribu-
opposite direction, and leads to a pronounced effect on th#ons. In this case, we do not expect a significant change of
density profiles. Both the boson and fermion densities spreaiiie phase diagram by repulsive exchange-correlation interac-
out and decrease substantially at the center of the trap withions, but only for a small enhancement of the phase
respect to the mean-field prediction, due to the repulsivéeparation.
exchange-correlation potential. This effect is shown in Figs. In the collapse regime, which can occur if the interaction
1 and 2, where we show the boson and fermion density disetween the two species is attractive, the situation is radi-
cally different, as in this case one has indeed a very high
overlap of the densities in the center of the trap. The
exchange-correlation interaction, which is always repulsive
sl | to second order in the boson-fermion scattering length, op-
poses the propensity to collapse due to the attractive mean-
field contribution. If the coupling strength between the two
components of the mixture is sufficiently strong, the
exchange-correlation can significantly modify the phase
diagram.

In Fig. 3, we provide the mean-field phase diagram of a
binary boson-fermion mixture, with the physical parameters
of the Florence experiment7]. The plot shows the behavior
of the critical number of bosorisy', i.e., the threshold num-
ber for the onset of collapse, as a function of the number of
fermionsNg . Collapse occurs at any point of the phase plane
above the critical curve, while the mixture is stable at all

FIG. 2. The fermion density profile for the Florence experiment.POINts below it. For low fermion numbefdg <8 10°, the
Dashed line: without exchange correlations; solid line: with ex-Critical number of bosonslg" begins to grow so fast that to
change correlations. Quantities are dimensionless, rescaled in uni@l practical purposes collapse is inhibited. The inversion re-
of £=(fi/mgwg)Y? gime between the number of fermions and the critical num-

30

12

r/l
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remark that the mixture is very sensitive to the exact value of
the boson-fermion scattering length in the collapse regime.
Since this value is experimentally known with a large uncer-
tainty, it would be crucial to determine it with a much greater
precision. This could be achieved by tuning the scattering
length in order to fit the experimental data on the onset of
collaps€[18]. Moreover, for large interaction strengths, such
as that in the Florence experiment, the second-order term in
the exchange-correlation energy might overestimate the ef-
fect of stabilization. In fact, in these cases, the attractive
third-order term could possibly give rise to a non-negligible
contribution, so that the mean-field critical line of Fig. 3 and

10 s : - - - - - - the second-order critical line of Fig. 4 would provide, respec-
S S tively, a lower and an upper bound. The true phase diagram
107° Np would, therefore, lie in between the two. A more detailed

analysis than that provided in the present paper requires,
however, analytical expressions of the third-order interaction
energy in powers okragg, and this is a formidable task,
because Feynman diagrams containing all possible combina-
tions of Boson-Fermion and Boson-Boson interactions have
to be considered. These effects cannot be simply determined
by resumming restricted classes of equivalent diagrams. Fi-

proximation is to be compared with the prediction obtainedna“y’ to go beyond second-order perturbation theory re-

by including exchange correlation. Figure 4 shows the samguires, for consistency, to tqke into account interactic_)n pro-
phase diagram as in Fig. 3, but with the inclusion of ex-_ooSes beyonswave scattering, such gswave scattering,

. C . .thus introducing powers of, e.g., tipewave Boson-Fermion
change correlation. We clearly see a significant increase iH gp » €9

- scattering length, and the description soon becomes exceed-
the critical number of the bosons due to exchange correlal-n lv comolex in the framework of perturbation theorv. Non-
tion. The inversion regime between the number of fermions gy P b Y-

and the critical number of bosons takes placeNat NC' perturbative methods, such as Monte Carlo simulations,
—1.2¢10%, and for a typical fermion numl:?dkl ~Z>< 184 would then be desirable to establish more accurate results.
~1. , F=

. or @ i In conclusion, we have introduced the Kohn-Sham
the critical boson numbeig ~1.5<10", i.e., a much larger scpeme of DFT for inhomogeneous Bose-Fermi systems to

number of bosons is needed to produce a collapse of th§eiermine the ground-state energy and density profiles to
fermion component. This behavior was qualitatively ex-second order in the boson-fermion scattering length. We have
pected since the effective exchange-correlation potentials A& mpared the theoretical predictions with current experi-
always repulsive to second order in the boson-fermion SCalhents, discussed the relevance of different exchange-
tering length. _ correlation terms, and investigated the importance of the
The quantitative difference between the mean-field andychange-correlation effects for dilute atomic gases. We have
the exchange-correlation phase diagrams deserves some &fown that these are substantial for systems, such as
planatory comments. First of all, the determination of the4°K-87Rb, with a large attractive boson-fermion interaction,
critical line for simultaneous collapse takes place in a regim%specially in the critical regime of collapse onset, by com-
where the numerics is very sensitive to small deviations Obaring the mean-field phase diagram with the exchange-
the input parameters. Thus, when a stable solution is NGty a|ation phase diagram. The DFT method outlined here
found, this could be ascribed either to the fact that the physiz4, be, in principle, extended to include higher-order correc-
cal collapse regime was reached or to an inappropriate Nyons and finite temperature effects.
merical precision. However, by increasing the numerical pre-
cision, computation time rapidly increases as well. On the We thank H. Hu and M. Modugno for useful comments
other hand, if a stable numerical solution is found, there camn an earlier draft of our work, and for stimulating conver-
certainly be no physical collapse. The critical curves wesations. A.A. and M.W. thank the DFG and the ESF for fi-
present are then lower bounds on the critical numbers. Waancial support. F.I. thanks the INFM for financial support.

FIG. 4. The critical number of bosomég" for the onset of col-
lapse as a function of the number of fermioNg including ex-
change correlation.

ber of bosons takes placeMg=Ng'=5x10*. For a typical
number of fermionsNg=2x10% one has a critical boson
number N§'=7x10*. The situation in the mean-field ap-
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