2,381 research outputs found
Computing prime factors with a Josephson phase qubit quantum processor
A quantum processor (QuP) can be used to exploit quantum mechanics to find
the prime factors of composite numbers[1]. Compiled versions of Shor's
algorithm have been demonstrated on ensemble quantum systems[2] and photonic
systems[3-5], however this has yet to be shown using solid state quantum bits
(qubits). Two advantages of superconducting qubit architectures are the use of
conventional microfabrication techniques, which allow straightforward scaling
to large numbers of qubits, and a toolkit of circuit elements that can be used
to engineer a variety of qubit types and interactions[6, 7]. Using a number of
recent qubit control and hardware advances [7-13], here we demonstrate a
nine-quantum-element solid-state QuP and show three experiments to highlight
its capabilities. We begin by characterizing the device with spectroscopy.
Next, we produces coherent interactions between five qubits and verify bi- and
tripartite entanglement via quantum state tomography (QST) [8, 12, 14, 15]. In
the final experiment, we run a three-qubit compiled version of Shor's algorithm
to factor the number 15, and successfully find the prime factors 48% of the
time. Improvements in the superconducting qubit coherence times and more
complex circuits should provide the resources necessary to factor larger
composite numbers and run more intricate quantum algorithms.Comment: 5 pages, 3 figure
The Effect of Climate Change to the Farm Shrimp Growth and Production: An Empirical Analysis
The shrimp growth and production can be measured through several components such as the harvest ton, mean body weight, survival rate and feed conversion ratio. According to previous studies, the shrimp feed conversion ratio should have a positive relationship with their mean body weight. Nevertheless, in real scenario, high feed conversion ratio does not necessarily implies maximum increment of mean body weight. The measurement of those components usually can be influenced by many factors such as climates, stocking density and day of culture. This study in particular explores the effect of climates on productivity of the shrimp species, Penaeus Vannamei and investigates whether feed conversion ratio influences the mean body weight when stocking are done at different climate season. First, the one-way MANOVA was used to measure the effect between the climate seasons and P. Vannamei production. Then, the regression analysis was apply to measure the relationship between P. Vannamei feed conversion ratio and mean body weight for different climate seasons. Finally, to find the best season for sustainable production of P. Vannamei, the average score of P. Vannamei production was measured according to their stocking climate season. Result revealed that dry season was more favorable for the growth and production of P. Vannamei compared to wet seaso
Population pharmacokinetics of the humanised monoclonal antibody, HuHMFG1 (AS1402), derived from a phase I study on breast cancer
International audienceBACKGROUND: HuHMFG1 (AS1402) is a humanised monoclonal antibody that has undergone a phase I trial in metastatic breast cancer. The aim of this study was to characterise the pharmacokinetics (PKs) of HuHMFG1 using a population PK model. METHOD: Data were derived from a phase I study of 26 patients receiving HuHMFG1 at doses ranging from 1 to 16 mg kg(-1). Data were analysed using NONMEM software and covariates were included. A limited sampling strategy (LSS) was developed using training and a validation data set. RESULTS: A linear two-compartment model was shown to be adequate to describe data. Covariate analysis indicated that weight was not related to clearance. An LSS was successfully developed on the basis of the model, in which one sample is collected immediately before the start of an infusion and the second is taken at the end of infusion. CONCLUSION: A two-compartment population PK model successfully describes HuHMFG1 behaviour. The model suggests using a fixed dose of HuHMFG1, which would simplify dosing. The model could be used to optimise dose level and dosing schedule if more data on the correlation between exposure and efficacy become available from future studies. The derived LSS could optimise further PK assessment of this antibody
Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.)
A 1.8 kb 5′-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from –986 to –959 and from –472 to –424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative β-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were ∼10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves
Passive Picoinjection Enables Controlled Crystallization in a Droplet Microfluidic Device
Segmented flow microfluidic devices offer an attractive means of studying crystallization processes. However, while they are widely employed for protein crystallization, there are few examples of their use for sparingly soluble compounds due to problems with rapid device fouling and irreproducibility over longer run‐times. This article presents a microfluidic device which overcomes these issues, as this is constructed around a novel design of “picoinjector” that facilitates direct injection into flowing droplets. Exploiting a Venturi junction to reduce the pressure within the droplet, it is shown that passive injection of solution from a side‐capillary can be achieved in the absence of an applied electric field. The operation of this device is demonstrated for calcium carbonate, where highly reproducible results are obtained over long run‐times at high supersaturations. This compares with conventional devices that use a Y‐junction to achieve solution loading, where in‐channel precipitation of calcium carbonate occurs even at low supersaturations. This work not only opens the door to the use of microfluidics to study the crystallization of low solubility compounds, but the simple design of a passive picoinjector will find wide utility in areas including multistep reactions and investigation of reaction dynamics
Meta-analysis Followed by Replication Identifies Loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as Associated with Systemic Lupus Erythematosus in Asians
Systemic lupus erythematosus (SLE) is a prototype autoimmune disease with a strong genetic involvement and ethnic differences. Susceptibility genes identified so far only explain a small portion of the genetic heritability of SLE, suggesting that many more loci are yet to be uncovered for this disease. In this study, we performed a meta-analysis of genome-wide association studies on SLE in Chinese Han populations and followed up the findings by replication in four additional Asian cohorts with a total of 5,365 cases and 10,054 corresponding controls. We identified genetic variants in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as associated with the disease. These findings point to potential roles of cell-cycle regulation, autophagy, and DNA demethylation in SLE pathogenesis. For the region involving TET3 and that involving CDKN1B, multiple independent SNPs were identified, highlighting a phenomenon that might partially explain the missing heritability of complex diseases
Observation of the electromagnetic doubly OZI-suppressed decay
Using a sample of billion events accumulated with the BESIII
detector at the BEPCII collider, we report the observation of the decay , which is the first evidence for a doubly
Okubo-Zweig-Iizuka suppressed electromagnetic decay. A clear structure
is observed in the mass spectrum around 1.02 GeV/, which can
be attributed to interference between and
decays. Due to this interference, two
possible solutions are found. The corresponding measured values of the
branching fraction of are and .Comment: 7 pages, 4 figures, published in Phys. Rev.
Targeting DNA-PKcs and ATM with miR-101 Sensitizes Tumors to Radiation
Radiotherapy kills tumor-cells by inducing DNA double strand breaks (DSBs). However, the efficient repair of tumors frequently prevents successful treatment. Therefore, identifying new practical sensitizers is an essential step towards successful radiotherapy. In this study, we tested the new hypothesis: identifying the miRNAs to target DNA DSB repair genes could be a new way for sensitizing tumors to ionizing radiation.HERE, WE CHOSE TWO GENES: DNA-PKcs (an essential factor for non-homologous end-joining repair) and ATM (an important checkpoint regulator for promoting homologous recombination repair) as the targets to search their regulating miRNAs. By combining the database search and the bench work, we picked out miR-101. We identified that miR-101 could efficiently target DNA-PKcs and ATM via binding to the 3'- UTR of DNA-PKcs or ATM mRNA. Up-regulating miR-101 efficiently reduced the protein levels of DNA-PKcs and ATM in these tumor cells and most importantly, sensitized the tumor cells to radiation in vitro and in vivo.These data demonstrate for the first time that miRNAs could be used to target DNA repair genes and thus sensitize tumors to radiation. These results provide a new way for improving tumor radiotherapy
Acid Solution Is a Suitable Medium for Introducing QX-314 into Nociceptors through TRPV1 Channels to Produce Sensory-Specific Analgesic Effects
BACKGROUND: Previous studies have demonstrated that QX-314, an intracellular sodium channel blocker, can enter into nociceptors through capsaicin-activated TRPV1 or permeation of the membrane by chemical enhancers to produce a sensory-selective blockade. However, the obvious side effects of these combinations limit the application of QX-314. A new strategy for targeting delivery of QX-314 into nociceptors needs further investigation. The aim of this study is to test whether acidic QX-314, when dissolves in acidic solution directly, can enter into nociceptors through acid-activated TRPV1 and block sodium channels from the intracellular side to produce a sensory-specific analgesic effect. METHODOLOGY/PRINCIPAL FINDINGS: Acidic solution or noradrenaline was injected intraplantarly to induce acute pain behavior in mice. A chronic constrictive injury model was performed to induce chronic neuropathic pain. A sciatic nerve blockade model was used to evaluate the sensory-specific analgesic effects of acidic QX-314. Thermal and mechanical hyperalgesia were measured by using radiant heat and electronic von Frey filaments test. Spinal Fos protein expression was determined by immunohistochemistry. The expression of p-ERK was detected by western blot assay. Whole cell clamp recording was performed to measure action potentials and total sodium current in rats DRG neurons. We found that pH 5.0 PBS solution induced behavioral hyperalgesia accompanied with the increased expression of spinal Fos protein and p-ERK. Pretreatment with pH 5.0 QX-314, and not pH 7.4 QX-314, alleviated pain behavior, inhibited the increased spinal Fos protein and p-ERK expression induced by pH 5.0 PBS or norepinephrine, blocked sodium currents and abolished the production of action potentials evoked by current injection. The above effects were prevented by TRPV1 channel inhibitor SB366791, but not by ASIC channel inhibitor amiloride. Furthermore, acidic QX-314 employed adjacent to the sciatic nerve selectively blocked the sensory but not the motor functions in naïve and CCI mice. CONCLUSIONS/SIGNIFICANCE: Acid solution is a suitable medium for introducing QX-314 into nociceptors through TRPV1 channels to produce a sensory-specific analgesic effect
- …