9 research outputs found

    Surge-varying LOS based path following of under actuated surface vehicles

    Get PDF
    1048-1055Subject to harsh ocean environment, a novel path following control scheme with accurate guidance and high anti-disturbance ability for under actuated surface vehicles is proposed. The innovative work is as follow: (1) Based on the traditional line-of-sight (LOS), a surge-varying LOS (SVLOS) guidance law is designed to achieve double guidance of speed and heading, which enhances the flexibility and precision of the previous LOS; (2) Unknown disturbances are exactly estimated by an exact disturbance observer (EDO), wherein the limitations of bounded and asymptotic observations can be avoided; (3) The EDO-based robust tracking controllers enable accurate disturbance compensation and guided signal tracking in harsh ocean environment. Rigorous theoretical analysis and significant simulation comparison have been done to demonstrate superiority of the EDO-SVLOS scheme

    Biologically Inspired Dynamic Thresholds for Spiking Neural Networks

    Full text link
    The dynamic membrane potential threshold, as one of the essential properties of a biological neuron, is a spontaneous regulation mechanism that maintains neuronal homeostasis, i.e., the constant overall spiking firing rate of a neuron. As such, the neuron firing rate is regulated by a dynamic spiking threshold, which has been extensively studied in biology. Existing work in the machine learning community does not employ bioinspired spiking threshold schemes. This work aims at bridging this gap by introducing a novel bioinspired dynamic energy-temporal threshold (BDETT) scheme for spiking neural networks (SNNs). The proposed BDETT scheme mirrors two bioplausible observations: a dynamic threshold has 1) a positive correlation with the average membrane potential and 2) a negative correlation with the preceding rate of depolarization. We validate the effectiveness of the proposed BDETT on robot obstacle avoidance and continuous control tasks under both normal conditions and various degraded conditions, including noisy observations, weights, and dynamic environments. We find that the BDETT outperforms existing static and heuristic threshold approaches by significant margins in all tested conditions, and we confirm that the proposed bioinspired dynamic threshold scheme offers homeostasis to SNNs in complex real-world tasks

    Catalytic Hydrogen Evolution of NaBH4_4 Hydrolysis by Cobalt Nanoparticles Supported on Bagasse-Derived Porous Carbon

    Get PDF
    As a promising hydrogen storage material, sodium borohydride (NaBH4) exhibits superior stability in alkaline solutions and delivers 10.8 wt.% theoretical hydrogen storage capacity. Nevertheless, its hydrolysis reaction at room temperature must be activated and accelerated by adding an effective catalyst. In this study, we synthesize Co nanoparticles supported on bagasse-derived porous carbon (Co@xPC) for catalytic hydrolytic dehydrogenation of NaBH4_4. According to the experimental results, Co nanoparticles with uniform particle size and high dispersion are successfully supported on porous carbon to achieve a Co@150PC catalyst. It exhibits particularly high activity of hydrogen generation with the optimal hydrogen production rate of 11086.4 mLH2_{H2}∙minH2^{H2}∙gCo_{Co}H2^{H2} and low activation energy (Ea_{a}) of 31.25 kJ molH2^{H2}. The calculation results based on density functional theory (DFT) indicate that the Co@xPC structure is conducive to the dissociation of [BH4_{4}]^{-}, which effectively enhances the hydrolysis efficiency of NaBH4_4. Moreover, Co@150PC presents an excellent durability, retaining 72.0% of the initial catalyst activity after 15 cycling tests. Moreover, we also explored the degradation mechanism of catalyst performance

    Peroxidase-mimicking evodiamine/indocyanine green nanoliposomes for multimodal imaging-guided theranostics for oral squamous cell carcinoma

    No full text
    Here, evodiamine (EVO) and the photosensitizer indocyanine green (ICG) were integrated into a liposomal nanoplatform for noninvasive diagnostic imaging and combinatorial therapy against oral squamous cell carcinoma (OSCC). EVO, as an active component extracted from traditional Chinese medicine, not only functioned as an antitumor chemotherapeutic agent but was also capable of 68Ga-chelation, thus working as a contrast agent for positron emission tomography/computed tomography (PET/CT) imaging. Moreover, EVO could exhibit peroxidase-like catalytic activity, converting endogenous tumor H2O2 into cytotoxic reactive oxygen species (ROS), enabling Chemo catalytic therapy beyond the well-known chemotherapy effect of EVO. As proven by in vitro and in vivo experiments, guided by optical imaging and PET/CT imaging, we show that the theragnostic liposomes have a significant inhibiting effect on in situ tongue tumor through photodynamic therapy combined with chemodynamic chemotherapy

    Catalytic Hydrogen Evolution of NaBH4 Hydrolysis by Cobalt Nanoparticles Supported on Bagasse-Derived Porous Carbon

    No full text
    As a promising hydrogen storage material, sodium borohydride (NaBH4) exhibits superior stability in alkaline solutions and delivers 10.8 wt.% theoretical hydrogen storage capacity. Nevertheless, its hydrolysis reaction at room temperature must be activated and accelerated by adding an effective catalyst. In this study, we synthesize Co nanoparticles supported on bagasse-derived porous carbon (Co@xPC) for catalytic hydrolytic dehydrogenation of NaBH4. According to the experimental results, Co nanoparticles with uniform particle size and high dispersion are successfully supported on porous carbon to achieve a Co@150PC catalyst. It exhibits particularly high activity of hydrogen generation with the optimal hydrogen production rate of 11086.4 mLH2∙min−1∙gCo−1 and low activation energy (Ea) of 31.25 kJ mol−1. The calculation results based on density functional theory (DFT) indicate that the Co@xPC structure is conducive to the dissociation of [BH4]−, which effectively enhances the hydrolysis efficiency of NaBH4. Moreover, Co@150PC presents an excellent durability, retaining 72.0% of the initial catalyst activity after 15 cycling tests. Moreover, we also explored the degradation mechanism of catalyst performance
    corecore