14 research outputs found

    UniDexGrasp: Universal Robotic Dexterous Grasping via Learning Diverse Proposal Generation and Goal-Conditioned Policy

    Full text link
    In this work, we tackle the problem of learning universal robotic dexterous grasping from a point cloud observation under a table-top setting. The goal is to grasp and lift up objects in high-quality and diverse ways and generalize across hundreds of categories and even the unseen. Inspired by successful pipelines used in parallel gripper grasping, we split the task into two stages: 1) grasp proposal (pose) generation and 2) goal-conditioned grasp execution. For the first stage, we propose a novel probabilistic model of grasp pose conditioned on the point cloud observation that factorizes rotation from translation and articulation. Trained on our synthesized large-scale dexterous grasp dataset, this model enables us to sample diverse and high-quality dexterous grasp poses for the object point cloud.For the second stage, we propose to replace the motion planning used in parallel gripper grasping with a goal-conditioned grasp policy, due to the complexity involved in dexterous grasping execution. Note that it is very challenging to learn this highly generalizable grasp policy that only takes realistic inputs without oracle states. We thus propose several important innovations, including state canonicalization, object curriculum, and teacher-student distillation. Integrating the two stages, our final pipeline becomes the first to achieve universal generalization for dexterous grasping, demonstrating an average success rate of more than 60\% on thousands of object instances, which significantly outperforms all baselines, meanwhile showing only a minimal generalization gap.Comment: Accepted to CVPR 202

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Surface Plasmon Field-Enhanced Raman Scattering Co-Excited by P‑Polarized and S‑Polarized Light Based on Waveguide-Coupled Surface Plasmon Resonance Configuration

    No full text
    We constructed a waveguide-coupled surface plasmon resonance (WCSPR) structure to enhance Raman scattering. In this structure, P-polarized and S-polarized incident lasers can simultaneously coexcite the evanescent field, thereby further enhancing Raman scattering. This configuration is a five-phase Kretschmann resonance setup that consists of a SF10 prism/inner Ag film/SiO2 film/outer Ag film/water structure. The WCSPR configuration effectively concentrates and confines the evanescent field excited by the incident light. Ag nanoparticles assembled on the outer Ag film surface enhance the evanescent field further by means of surface plasmon resonance. By finely tuning the thickness of the Ag and SiO2 films, it is possible to achieve a coincidence between the SPR angle of P-polarized light and that of S-polarized light. At this angle, both P- and S-polarized light can jointly elevate the evanescent field intensity, leading to the simultaneous enhancement of the electric fields at the upper, lower, left, and right parts of the silver nanoparticles and generating maximum evanescent field enhancement. We achieved an electric field enhancement of up to 103 around the nanoparticles, leading to more SERS hotspots and comparable SERS enhancement capability to gap-type hotspots. Our WCSPR structure combined with the nanoparticles offers a feasible strategy for the SERS detection of large molecules that cannot be placed in traditional gap-type hotspots. It is highly convenient for SERS detection of large molecules

    Effects of Haima Duobian Pill in a Rat Model of Kidney Yang Deficiency Syndrome

    No full text
    Objective. Modern research shows that Haima Duobian pill (HDP) can relieve the kidney yang deficiency syndrome (KYDS), but the mechanism is still unclear. The aim of this work was to study the effects of HDP in a rat model of KYDS. Materials and Methods. The network pharmacology methods were used to predict the therapeutic effects of Haima Duobian pill. Adenine was used to establish the rat model of kidney yang deficiency syndrome. The general physical signs of rats were observed after different doses of Haima Duobian pill (HDP) were given. Serum cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), luteinizing hormone (LH), follicle-stimulating hormone (FSH), testosterone (T), estradiol (E2), and gonadotropin-releasing hormone (GnRH) levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Then, the histopathologic changes and sperm activity were detected. Results. HDP could improve the general signs of kidney yang deficiency syndrome rats. After the rats were treated with HDP, the expression of cGMP and E2 was significantly inhibited and the expression of cAMP and T was significantly increased. The pathological damage of testis, epididymis, and seminal vesicle was alleviated, and the sperm activity was improved. Conclusion. For adenine-induced kidney yang deficiency syndrome in rats, HDP had a significant therapeutic effect

    Reduction of Th2 Inflammation and Fibrosis in Eosinophilic Esophagitis in a Murine Model by Citri Reticulatae Pericarpium

    No full text
    ETHNOPHARMACOLOGICAL RELEVANCE: Inflammation and subepithelial fibrosis play major roles in the early pathology of eosinophilic esophagitis (EoE). However, there are currently no pharmacotherapeutic interventions that directly target eosinophilic esophagitis. Citri Reticulatae Pericarpium (CRP, known as Chen-Pi) is one of most frequently used qi-regulating drugs in Chinese medicine and nutrition. CRP is rich with flavonones and polymethoxy flavones, both of which exhibit superior anti-inflammatory, anti-allergic and anti-fibrosis effects. This study is to investigate intervention effect of CRP on EoE, to identify its active compounds and to explore its underlying mechanisms. METHODS: The CRP extract was obtained by liquid-liquid extraction with 70% ethanol, and its main components were identified by HPLC and TLC chromatography as hesperidin, nobiletin, tangeretin, and narirutin in turn. Furthermore, we evaluated its effect and underlying mechanisms in an PN (Peanut protein extract)-sensitized murine model of food allergy induced EoE. RESULTS: CRP treatment attenuated EoE model mice symptomatology, blocked hypothermia, reduced the production of PN-specific IgE and IgG1 and T2 cytokines (interleukin (IL)-4 and IL-5), and increased the level of anti-inflammatory cytokines IL-10 and interferon (IFN)-γ. CRP treatment also significantly alleviated the pathological damage and reduced fibrosis in inflamed tissues like esophagus, lung, and intestine. These results were strongly associated with reducing the expression of p-p38 mitogen-activated protein kinase (MAPK), transforming growth factor beta1 (TGF-β1) and p-Smad 3 proteins. CONCLUSION: CRP extract markedly inhibited T2 immune response and attenuated subepithelial fibrosis with a dose-dependent manner through down-regulating MAPK/TGF-β signaling pathway. It is suggested that CRP extract might serve as a potential therapy for food allergy-induced EoE like disease

    Development of an Oral Isoliquiritigenin Self-Nano-Emulsifying Drug Delivery System (ILQ-SNEDDS) for Effective Treatment of Eosinophilic Esophagitis Induced by Food Allergy

    No full text
    Isoliquiritigenin (ILQ) is a natural flavonoid with various pharmacological activities. In this study, we optimized the preparation method of self-nano-emulsion-loaded ILQ to further improve its bioavailability based on our previous study. In addition, its effect on the treatment of eosinophilic esophagitis was also evaluated. Combined surfactants and co-surfactants were screened, and the optimal formulation of ILQ-SNEDDS was determined according to droplet size, droplet dispersity index (DDI), and drug loading. The formulation was composed of ethyl oleate (oil phase), Tween 80 & Cremophor EL (surfactant, 7:3), and PEG 400 & 1,2-propylene glycol (cosurfactant, 1:1), with a mass ratio of 3:6:1. Its physicochemical properties, including drug loading, droplets’ size, Zeta potential, appearance, and Fourier transform infrared (FTIR) spectroscopy, were characterized. In vitro release profile, in situ intestinal absorption, and in vivo pharmacokinetics were applied to confirm the improvement of oral ILQ bioavailability by NEDDS. Finally, the efficacy of ILQ-SNEDDS in the treatment of food allergy-induced eosinophilic esophagitis (EOE) was further evaluated. When the ILQ drug loading was 77.9 mg/g, ILQ-SNEDDS could self-assemble into sub-spherical uniform droplets with an average size of about 33.4 ± 2.46 nm (PDI about 0.10 ± 0.05) and a Zeta potential of approximately −10.05 ± 3.23 mV. In situ intestinal absorption showed that optimized SNEDDS significantly increased the apparent permeability coefficient of ILQ by 1.69 times, and the pharmacokinetic parameters also confirmed that SNEDDS sharply increased the max plasma concentration and bioavailability of ILQ by 3.47 and 2.02 times, respectively. ILQ-SNEDDS also significantly improved the apparent signs, allergic index, hypothermia and body weight of EoE model mice. ILQ-SNEDDS treatment significantly reduced the levels of inflammatory cytokines, such as TNF-α, IL-4, and IL-5, and the level of PPE-s-IgE in serum, and significantly inhibited the expression of TGF-β1 in esophageal tissue. SNEDDS significantly improved the solubility and bioavailability of ILQ. Additionally, ILQ-SNEDDS treatment attenuated symptomatology of EoE model mice, which was associated with inhibiting the production of TH2 inflammatory cytokines and PPE-s-IgE and the expression of TGF-β1. The above results shows that ILQ-SNEDDS has great potential as a good candidate for the treatment of eosinophilic esophagitis

    High Sensitivity Refractometer Based on a Tapered-Single Mode-No Core-Single Mode Fiber Structure

    No full text
    We have proposed a novel tapered-single mode-no core-single mode (TSNS) fiber refractometer based on multimode interference. The TSNS structure exhibits a high contrast ratio (>15 dB) and a uniform interference fringe. The influence of different lengths and diameters of the TSNS on the refractive index unit (RIU) sensitivity was investigated. The experimental investigations indicated a maximum sensitivity of 1517.28 nm/RIU for a refractive index of 1.417 and low-temperature sensitivity (<10 pm/°C). The experimental and simulation results are also in good agreement

    Design of Metal-Free Polymer Carbon Dots: A New Class of Room-Temperature Phosphorescent Materials

    No full text
    Polymer carbon dots (PCDs) are proposed as a new class of room-temperature phosphorescence (RTP) materials. The abundant energy levels in PCDs increase the probability of intersystem crossing (ISC) and their covalently crosslinked framework structures greatly suppress the nonradiative transitions. The efficient methods allow the manufacture of PCDs with unique RTP properties in air without additional metal complexation or complicated matrix composition. They thus provide a route towards the rational design of metal-free RTP materials that may be synthesized easily. Furthermore, we find that RTP is associated with a crosslink-enhanced emission (CEE) effect, which provides further routes to design improved PCDs with diverse RTP performance. Our results show the potential of PCDs as a universal route to achieve effective metal-free RTP
    corecore