8 research outputs found

    Radial Growth Responses to Climate of Pinus yunnanensis at Low Elevations of the Hengduan Mountains, China

    No full text
    The relationship between climate and forest is critical to understanding the influence of future climate change on terrestrial ecosystems. Research on trees at high elevations has uncovered the relationship in the Hengduan Mountains region, a critical biodiversity hotspot area in southwestern China. The relationship for the area at low elevations below 2800 m a.s.l. in the region remains unclear. In this study, we developed tree ring width chronologies of Pinus yunnanensis Franch. at five sites with elevations of 1170–1725 m in this area. Monthly precipitation, relative humidity, maximum/mean/minimum air temperature and the standardized precipitation evapotranspiration index (SPEI), a drought indicator with a multi-timescale, were used to investigate the radial growth-climate relationship. Results show that the growth of P. yunnanensis at different sites has a similar response pattern to climate variation. Relative humidity, precipitation, and air temperature in the dry season, especially in its last month (May), are critical to the radial growth of trees. Supplemental precipitation amounts and reduced mean or maximum air temperature can promote tree growth. The high correlations between chronologies and SPEI indicate that the radial growth of trees at the low elevations of the region is significantly limited by the moisture availability. Precipitation in the last month of the previous wet season determines the drought regime in the following dry seasons. In spite of some differences in the magnitudes of correlations in the low-elevation area of the Hengduan Mountains region, chronologies generally matched well with each other at different elevations, and the differences are not evident with the change in elevation

    Ammonia removal from water using sodium hydroxide modified zeolite mordenite

    Get PDF
    Natural and modified mordenite zeolites were used to remove ammonium ions from aqueous solution and Koi pond water. The zeolite modification was conducted using sodium hydroxide solutions of different strengths at 75 degreeC for 24 h. Langmuir{,} Freundlich{,} Sips{,} and Toth equations with their temperature dependent forms were used to represent the adsorption equilibria data. The Langmuir and its temperature dependent forms could represent the data better than the other models. The pseudo-first order model has better performance than the pseudo-second order model in correlating the adsorption kinetic data. The controlling mechanism of the adsorption of NH4+ from aqueous solution onto the natural zeolite and the one treated with 6 M sodium hydroxide solution was dominated by physical adsorption. The competition with other ions occurred through different reaction mechanisms so it decreases the removal efficiency of ammonium ions by the zeolites. For the treated zeolite{,} the removal efficiency decreased from 81% to 66.9%. A Thomas model can represent the experimental data for both adsorption of ammonia from aqueous solution or from Koi pond water
    corecore