4,494 research outputs found

    Distribution of catecholamine fibers in the cochlear nucleus of horseshoe bats and mustache bats

    Get PDF
    The glyoxylic-acid-induced fluorescence technique was applied to demonstrate patterns of catecholaminergic innervation within the auditory brainstem of echolocating bats and the house mouse. In the cochlear nucleus of the rufous horseshoe bat (Rhinolophus rouxi) and the mustache bat (Pteronotus parnelli), species-specific catecholaminergic innervation patterns are found that contrast with the relatively homogeneous innervation in the rodent. In both bats the subnuclei of the cochlear nucleus receive a differentially dense supply of catecholaminergic fibers, and within the subnuclei, the catecholamine innervation densities can be correlated with the tonotopic frequency representation. The areas devoted to the high-frequency echolocation calls are less densely innervated than those regions which are responsive to lower frequencies. Apart from this common scheme, there are noteworthy distinctions between the two bats which correlate with specialized cytoarchitectural features of the cochlear nucleus. The marginal cell group, located medially to the anteroventral cochlear nucleus of Pteronotus, receives the densest supply of catecholaminergic fibers of all auditory nuclei. This plexus is formed by a morphologically distinct population of catecholaminergic fibers

    First-order magnetic and structural phase transitions in Fe1+y_{1+y}Sex_xTe1x_{1-x}

    Full text link
    We use bulk magnetic susceptibility, electronic specific heat, and neutron scattering to study structural and magnetic phase transitions in Fe1+y_{1+y}Se% x_xTe1x_{1-x}. Fe1.068_{1.068}Te exhibits a first order phase transition near 67 K with a tetragonal to monoclinic structural transition and simultaneously develops a collinear antiferromagnetic (AF) order responsible for the entropy change across the transition. Systematic studies of FeSe%_{1-x}Tex_x system reveal that the AF structure and lattice distortion in these materials are different from those of FeAs-based pnictides. These results call into question the conclusions of present density functional calculations, where FeSe1x_{1-x}Tex_x and FeAs-based pnictides are expected to have similar Fermi surfaces and therefore the same spin-density-wave AF order.Comment: 5 pages, 3 figure

    White adipose tissue mitochondrial metabolism in health and in obesity

    Get PDF
    White adipose tissue is one of the largest organs of the body. It plays a key role in whole-body energy status and metabolism; it not only stores excess energy but also secretes various hormones and metabolites to regulate body energy balance. Healthy adipose tissue capable of expanding is needed for metabolic well-being and to prevent accumulation of triglycerides to other organs. Mitochondria govern several important functions in the adipose tissue. We review the derangements of mitochondrial function in white adipose tissue in the obese state. Downregulation of mitochondrial function or biogenesis in the white adipose tissue is a central driver for obesity-associated metabolic diseases. Mitochondrial functions compromised in obesity include oxidative functions and renewal and enlargement of the adipose tissue through recruitment and differentiation of adipocyte progenitor cells. These changes adversely affect whole-body metabolic health. Dysfunction of the white adipose tissue mitochondria in obesity has long-term consequences for the metabolism of adipose tissue and the whole body. Understanding the pathways behind mitochondrial dysfunction may help reveal targets for pharmacological or nutritional interventions that enhance mitochondrial biogenesis or function in adipose tissue.Peer reviewe

    Optical Nonreciprocity of Cold Atom Bragg Mirrors in Motion

    Get PDF
    Copyright © 2013 American Physical SocietyReciprocity is fundamental to light transport and is a concept that holds also in rather complex systems. Yet, reciprocity can be switched off even in linear, isotropic, and passive media by setting the material structure into motion. In highly dispersive multilayers this leads to a fairly large forward-backward asymmetry in the pulse transmission. Moreover, in multilevel systems, this transport phenomenon can be all-optically enhanced. For atomic multilayer structures made of three-level cold 87Rb atoms, for instance, forward-backward transmission contrast around 95% can be obtained already at atomic speeds in the meter per second range. The scheme we illustrate may open up avenues for optical isolation that were not previously accessible

    Revisiting the Bragg reflector to illustrate modern developments in optics

    Get PDF
    Copyright © 2014 American Association of Physics TeachersA series of thin layers of alternating refractive index are known to make a good optical mirror over certain bands of frequency. Such a device, often termed the Bragg reflector, is usually introduced to students in isolation from other parts of the curriculum. Here, we show that the basic physics of wave propagation through a stratified medium can be used to illustrate some more modern developments in optics and quantum physics, from transfer matrix techniques to the optical properties of cold trapped atoms and optomechanical cooling. We also show a simple example of how such systems exhibit an appreciable level of optical nonreciprocity.Engineering and Physical Sciences Research Council (EPSRC)National Natural Science Foundation of ChinaNational Basic Research Program of ChinaCRUI-British CouncilAzione Integrata MIURFondo di Ateneo of Brescia Universit

    Digital Technologies in Providing Development of Algorithms Surgical Treatment of Supraventricular Arrhythmias

    Get PDF
    The aim of the study was the development and clinical application of patient selection algorithm for surgical treatment of longlasting persistent atrial fibrillation. The study included 235 patients with acquired heart disease and coronary artery disease, which in the period from 1999 to 2015 performed surgical treatment of long-term persistent atrial fibrillation (RF “MAZE III” procedure) in conjunction with the correction of the underlying heart disease. The patients were divided into 2 groups according to the method of operation: the group 1 – 135 patients (76 women and 59 men) who have applied an integrated approach to surgery for atrial fibrillation, including penetrating method of RF effects on atrial myocardium and the study of the function of the sinus node before and after the operation (these patients were operated on from 2008 to 2015). The group 2 – 100 patients (62 women and 38 men) with a “classical” method of monopolar RF “MAZE III”, which the sinus node function was not studied. We used the combined (epi- and endocardial) method of RF "MAZE". This algorithm is decreasing of possible permanent pacemaker postoperatively. The initial sinus node function in these patients, measured using the original method, the basic line of this algorithm was taken. The results showed that use this algorithm for selection of patients allows significantly reduce the possibility of pacemaker implantation in the postoperative perio

    Mapping and neuromodulation of lower urinary tract function using spinal cord stimulation in female rats

    Get PDF
    Spinal cord epidural stimulation (SCS) represents a form of neuromodulation for the management of spasticity and pain. This technology has recently emerged as a new approach for potentially augmenting locomotion and voiding function in humans and rodents after spinal cord injury. However, the effect of SCS on micturition has not been studied extensively. Here, SCS was first applied as a direct stimulus onto individual segmental levels of the lumbar spinal cord in rats to map evoked external urethral sphincter (EUS) electromyography activity and SCS-induced voiding contractions. SCS of L2-3 inhibited EUS tonic activity, and SCS on L3 (L3/SCS) inhibited EUS tonic activity and elicited EUS bursting. In contrast, SCS of L1 and L4-6 evoked EUS tonic contractions, which resembled the urethral guarding reflex during bladder storage. Next, the effects of a bilateral pelvic nerve crush (PNC) injury on urodynamic function were examined at 14 days post-operatively. The PNC injury resulted in decreased voiding efficiency and maximum intravesical pressure, whereas the post-voiding residual volume was increased, suggestive of an underactive bladder. Finally, L3/SCS was performed to induce a voiding contraction and enable voiding in rats with a PNC injury. Voiding efficiency was significantly increased, and the residual volume was decreased by L3/SCS in rats after the PNC injury. We conclude that L3/SCS may be used to induce micturition reflexes in a partially filled bladder, reduce urethral resistance, and augment bladder emptying after PNC injury

    Iron pnictides as a new setting for quantum criticality

    Full text link
    Two major themes in the physics of condensed matter are quantum critical phenomena and unconventional superconductivity. These usually occur in the context of competing interactions in systems of strongly-correlated electrons. All this interesting physics comes together in the behavior of the recently discovered iron pnictide compounds that have generated enormous interest because of their moderately high-temperature superconductivity. The ubiquity of antiferromagnetic ordering in their phase diagrams naturally raises the question of the relevance of magnetic quantum criticality, but the answer remains uncertain both theoretically and experimentally. Here we show that the undoped iron pnictides feature a novel type of magnetic quantum critical point, which results from a competition between electronic localization and itinerancy. Our theory provides a mechanism to understand the experimentally-observed variation of the ordered moment among the undoped iron pnictides. We suggest P substitution for As in the undoped iron pnictides as a means to access this new example of magnetic quantum criticality in an unmasked fashion. Our findings point to the iron pnictides as a much-needed new setting for quantum criticality, one that offers a new set of control parameters.Comment: (v3) New abstract, more explanatory material, accepted for PNA
    corecore