38 research outputs found

    HST/WFC3 grism observations of z ∼ 1 clusters : the cluster versus field stellar mass-size relation and evidence for size growth of quiescent galaxies from minor mergers

    Get PDF
    Minor mergers are thought to be responsible for the size growth of quiescent field galaxies with decreasing redshift. We test this hypothesis using the cluster environment as a laboratory. Satellite galaxies in clusters move at high velocities, making mergers between them rare. The stellar mass-size relation in 10 clusters and in the field is measured and compared at z similar to 1. Our cluster sample contains 344 spectroscopically confirmed cluster members with Gemini/Gemini Multi-Object Spectrographs and 182 confirmed with Hubble Space Telescope/Wide Field Camera 3 G141 grism spectroscopy. On average, quiescent and star-forming cluster galaxies are smaller than their field counterparts by (0.08 +/- 0.04) and (0.07 +/- 0.01) dex, respectively. These size offsets are consistent with the average sizes of quiescent and star-forming field galaxies between 1.2 <= z <= 1.5, implying the cluster environment has inhibited size growth between this period and z similar to 1. The negligible differences measured between the z similar to 0 field and cluster quiescent mass-size relations in other works imply that the average size of quiescent cluster galaxies must rise with decreasing redshift. Using a toy model, we show that the disappearance of the compact cluster galaxies might be explained if, on average, similar to 40 per cent of them merge with their brightest cluster galaxies (BCGs) and similar to 60 per cent are tidally destroyed into the intracluster light (ICL) between 0 <= z <= 1. This is in agreement with the observed stellar mass growth of BCGs between 0 <= z <= 1 and the observed ICL stellar mass fraction at z similar to 0. Our results support minor mergers as the cause for the size growth in quiescent field galaxies, with cluster-specific processes responsible for the similarity between the field and cluster quiescent mass-size relations at low redshift

    RCSLenS: The Red Cluster Sequence Lensing Survey

    Get PDF
    We present the Red Cluster Sequence Lensing Survey (RCSLenS), an application of the methods developed for the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) to the ∼785 deg2, multi-band imaging data of the Red-sequence Cluster Survey 2. This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts, we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total, we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7 deg2 and down to a magnitude limit of r ∼ 24.5 is 8.1 galaxies per arcmin2 (weighted: 5.5 arcmin−2) distributed over 14 patches on the sky. Photometric redshifts based on four-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg2. We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through Canadian Astronomy Data Centre at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release

    RCSLenS: The Red Cluster Sequence Lensing Survey

    Get PDF
    We present the Red Cluster Sequence Lensing Survey (RCSLenS), an application of the methods developed for the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) to the ∼785 deg2, multi-band imaging data of the Red-sequence Cluster Survey 2. This project represents the largest public, sub-arcsecond seeing, multi-band survey to date that is suited for weak gravitational lensing measurements. With a careful assessment of systematic errors in shape measurements and photometric redshifts, we extend the use of this data set to allow cross-correlation analyses between weak lensing observables and other data sets. We describe the imaging data, the data reduction, masking, multi-colour photometry, photometric redshifts, shape measurements, tests for systematic errors, and a blinding scheme to allow for more objective measurements. In total, we analyse 761 pointings with r-band coverage, which constitutes our lensing sample. Residual large-scale B-mode systematics prevent the use of this shear catalogue for cosmic shear science. The effective number density of lensing sources over an unmasked area of 571.7 deg2 and down to a magnitude limit of r ∼ 24.5 is 8.1 galaxies per arcmin2 (weighted: 5.5 arcmin−2) distributed over 14 patches on the sky. Photometric redshifts based on four-band griz data are available for 513 pointings covering an unmasked area of 383.5 deg2. We present weak lensing mass reconstructions of some example clusters as well as the full survey representing the largest areas that have been mapped in this way. All our data products are publicly available through Canadian Astronomy Data Centre at http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/community/rcslens/query.html in a format very similar to the CFHTLenS data release

    The GOGREEN survey: The environmental dependence of the star-forming galaxy main sequence at 1.0<z<1.51.0<z<1.5

    Get PDF
    We present results on the environmental dependence of the star-forming galaxy main sequence in 11 galaxy cluster fields at 1.0<z<1.51.0 < z < 1.5 from the Gemini Observations of Galaxies in Rich Early Environments Survey (GOGREEN) survey. We use a homogeneously selected sample of field and cluster galaxies whose membership is derived from dynamical analysis. Using [OII]-derived star formation rates (SFRs), we find that cluster galaxies have suppressed SFRs at fixed stellar mass in comparison to their field counterparts by a factor of 1.4 ±\pm 0.1 (3.3σ\sim3.3\sigma) across the stellar mass range: 9.0<log(M/M)<11.29.0 < \log(M_{*} /M_{\odot}) < 11.2. We also find that this modest suppression in the cluster galaxy star-forming main sequence is mass and redshift dependent: the difference between cluster and field increases towards lower stellar masses and lower redshift. When comparing the distribution of cluster and field galaxy SFRs to the star-forming main sequence, we find an overall shift towards lower SFRs in the cluster population, and note the absence of a tail of high SFR galaxies as seen in the field. Given this observed suppression in the cluster galaxy star-forming main sequence, we explore the implications for several scenarios such as formation time differences between cluster and field galaxies, and environmentally-induced star formation quenching and associated timescales

    Excursions into the Evolution of Early-Type Galaxies in Clusters

    Full text link
    Recent observations have revealed that early-type galaxies (ETG) in clusters comprise an old galaxy population that is evolving passively. We review some recent observations from the ground and from HST that show that ETG have undergone a significant amount of luminosity evolution. This evolution is traced by two projections of the fundamental plane (FP): the size-magnitude relation (SMR) and the color-magnitude relation (CMR). We will briefly discuss the relevance of all these results in the context of the universality of the IMF.Comment: 10 pages, 2 figures, to appear in the proccedings of "New Quests in Stellar Astrophysics: The Link Between Stars and Cosmology, Chavez et al. ed

    GOGREEN: a critical assessment of environmental trends in cosmological hydrodynamical simulations at z ~ 1

    Get PDF
    Recent observations have shown that the environmental quenching of galaxies at z ∼ 1 is qualitatively different to that in the local Universe. However, the physical origin of these differences has not yet been elucidated. In addition, while low-redshift comparisons between observed environmental trends and the predictions of cosmological hydrodynamical simulations are now routine, there have been relatively few comparisons at higher redshifts to date. Here we confront three state-of-the-art suites of simulations (BAHAMAS+MACSIS, EAGLE+Hydrangea, IllustrisTNG) with state-of-the-art observations of the field and cluster environments from the COSMOS/UltraVISTA and GOGREEN surveys, respectively, at z ∼ 1 to assess the realism of the simulations and gain insight into the evolution of environmental quenching. We show that while the simulations generally reproduce the stellar content and the stellar mass functions of quiescent and star-forming galaxies in the field, all the simulations struggle to capture the observed quenching of satellites in the cluster environment, in that they are overly efficient at quenching low-mass satellites. Furthermore, two of the suites do not sufficiently quench the highest mass galaxies in clusters, perhaps a result of insufficient feedback from AGN. The origin of the discrepancy at low stellar masses (⁠M∗≲1010 M⊙), which is present in all the simulations in spite of large differences in resolution, feedback implementations, and hydrodynamical solvers, is unclear. The next generation of simulations, which will push to significantly higher resolution and also include explicit modelling of the cold interstellar medium, may help us to shed light on the low-mass tension

    Gravitational Lensing in Astronomy

    Get PDF
    Deflection of light by gravity was predicted by General Relativity and observationaly confirmed in 1919. In the following decades various aspects of the gravitational lens effect were explored theoretically, among them the possibility of multiple or ring-like images of background sources, the use of lensing as a gravitational telescope on very faint and distant objects, and the possibility to determine Hubble's constant with lensing. Only relatively recently gravitational lensing became an observational science after the discovery of the first doubly imaged quasar in 1979. Today lensing is a booming part of astrophysics. In addition to multiply-imaged quasars, a number of other aspects of lensing have been discovered since, e.g. giant luminous arcs, quasar microlensing, Einstein rings, galactic microlensing events, arclets, or weak gravitational lensing. By now literally hundreds of individual gravitational lens phenomena are known. Although still in its childhood, lensing has established itself as a very useful astrophysical tool with some remarkable successes. It has contributed significant new results in areas as different as the cosmological distance scale, the large scale matter distribution in the universe, mass and mass distribution of galaxy clusters, physics of quasars, dark matter in galaxy halos, or galaxy structure.Comment: Review article for "Living Reviews in Relativity", see http://www.livingreviews.org . 41 pages, latex, 22 figures (partly in GIF format due to size constraints). High quality postscript files can be obtained electronically at http://www.aip.de:8080/~jkw/review_figures.htm

    The Helmholtzian Equation: Stabilizing Mechanisms for Quadratic Nonlinear Fields

    Get PDF
    Hexagonal Resonant Triad patterns are shown to exist as stable solutions of a particular type of nonlinear field where no cubic field nonlinearity is present. The zero ‘dc’ Fourier mode is shown to stabilize these patterns produced by a pure quadratic field nonlinearity. Closed form solutions and stability results are obtained near the critical point, complimented by numerical studies far from the critical point. These results are obtained using a neural field based on the Helmholtzian operator. Constraints on structure and parameters for a general pure quadratic neural field which supports hexagonal patterns are obtained

    Narrow Band Photometry and the Reddening of CYG A

    No full text
    corecore