19 research outputs found

    On data-selective learning

    Get PDF
    Adaptive filters are applied in several electronic and communication devices like smartphones, advanced headphones, DSP chips, smart antenna, and teleconference systems. Also, they have application in many areas such as system identification, channel equalization, noise reduction, echo cancellation, interference cancellation, signal prediction, and stock market. Therefore, reducing the energy consumption of the adaptive filtering algorithms has great importance, particularly in green technologies and in devices using battery. In this thesis, data-selective adaptive filters, in particular the set-membership (SM) adaptive filters, are the tools to reach the goal. There are well known SM adaptive filters in literature. This work introduces new algorithms based on the classical ones in order to improve their performances and reduce the number of required arithmetic operations at the same time. Therefore, firstly, we analyze the robustness of the classical SM adaptive filtering algorithms. Secondly, we extend the SM technique to trinion and quaternion systems. Thirdly, by combining SM filtering and partialupdating, we introduce a new improved set-membership affine projection algorithm with constrained step size to improve its stability behavior. Fourthly, we propose some new least-mean-square (LMS) based and recursive least-squares based adaptive filtering algorithms with low computational complexity for sparse systems. Finally, we derive some feature LMS algorithms to exploit the hidden sparsity in the parameters.Filtros adaptativos são aplicados em diversos aparelhos eletrônicos e de comunicação, como smartphones, fone de ouvido avançados, DSP chips, antenas inteligentes e sistemas de teleconferência. Eles também têm aplicação em várias áreas como identificação de sistemas, equalização de canal, cancelamento de eco, cancelamento de interferência, previsão de sinal e mercado de ações. Desse modo, reduzir o consumo de energia de algoritmos adaptativos tem importância significativa, especialmente em tecnologias verdes e aparelhos que usam bateria. Nesta tese, filtros adaptativos com seleção de dados, em particular filtros adaptativos da família set-membership (SM), são apresentados para cumprir essa missão. No presente trabalho objetivamos apresentar novos algoritmos, baseados nos clássicos, a fim de aperfeiçoar seus desempenhos e, ao mesmo tempo, reduzir o número de operações aritméticas exigidas. Dessa forma, primeiro analisamos a robustez dos filtros adaptativos SM clássicos. Segundo, estendemos o SM aos números trinions e quaternions. Terceiro, foram utilizadas também duas famílias de algoritmos, SM filtering e partial-updating, de uma maneira elegante, visando reduzir energia ao máximo possível e obter um desempenho competitivo em termos de estabilidade. Quarto, a tese propõe novos filtros adaptativos baseado em algoritmos least-mean-square (LMS) e mínimos quadrados recursivos com complexidade computacional baixa para espaços esparsos. Finalmente, derivamos alguns algoritmos feature LMS para explorar a esparsidade escondida nos parâmetros

    Head Injury Mechanisms

    Get PDF
    Head injury is a major cause of death and disability in young, active population. It may introduce energy through the skin to the deepest structures of the brain. The entered energy may cause direct or primary injury, or result in other, secondary, events to the tissues. These are mechanical loads and are classified as static when the duration of loading is more than 200 ms and dynamic when less than this. The dynamic loads are further classified as impact if the injurious agent has contact with the head or impulsive when the load exerted to other body part/s results in damage to the brain by the change in speed of the head motion. Impact loads can either exert their effect with direct contact to the tissue or may cause inertial loads. The direct contact can cause deformation of the skull or induce energy stress waves to the head and brain. All of these events will result in tissue strain due to compression, tension, or shear. The strain will culminate in injury, which may be a scalp abrasion, laceration, skull fracture, or different kinds of intracranial traumatic lesions

    Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Funding: F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia, I.P. (FCT), in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy i4HB; FCT/MCTES through the project UIDB/50006/2020. J Conde acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006.proofepub_ahead_of_prin

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    On the robustness of set-membership adaptive filtering algorithms

    No full text
    Abstract In this paper, we address the robustness, in the sense of l 2-stability, of the set-membership normalized least-mean-square (SM-NLMS) and the set-membership affine projection (SM-AP) algorithms. For the SM-NLMS algorithm, we demonstrate that it is robust regardless of the choice of its parameters and that the SM-NLMS enhances the parameter estimation in most of the iterations in which an update occurs, two advantages over the classical NLMS algorithm. Moreover, we also prove that if the noise bound is known, then we can set the SM-NLMS so that it never degrades the estimate. As for the SM-AP algorithm, we demonstrate that its robustness depends on a judicious choice of one of its parameters: the constraint vector (CV). We prove the existence of CVs satisfying the robustness condition, but practical choices remain unknown. We also demonstrate that both the SM-AP and SM-NLMS algorithms do not diverge, even when their parameters are selected naively, provided the additional noise is bounded. Numerical results that corroborate our analyses are presented

    Distributed trust-based unscented Kalman filter for non-linear state estimation under cyber-attacks: The application of manoeuvring target tracking over wireless sensor networks

    Get PDF
    This paper is concerned with secure state estimation of non-linear systems under malicious cyber-attacks. The application of target tracking over a wireless sensor network is investigated. The existence of rotational manoeuvre in the target movement introduces non-linear behaviour in the dynamic model of the system. Moreover, in wireless sensor networks under cyber-attacks, erroneous information is spread in the whole network by imperilling some nodes and consequently their neighbours. Thus, they can deteriorate the performance of tracking. Despite the development of target tracking techniques in wireless sensor networks, the problem of rotational manoeuvring target tracking under cyberattacks is still challenging. To deal with the model non-linearity due to target rotational manoeuvres, an unscented Kalman filter is employed to estimate the target state variables consisting of the position and velocity. A diffusion-based distributed unscented Kalman filtering combined with a trust-based scheme is applied to ensure robustness against the cyber-attacks in manoeuvring target tracking applications over a wireless sensor network with secured nodes. Simulation results demonstrate the effectiveness of the proposed strategy in terms of tracking accuracy, while random attacks, false data injection attacks, and replay attacks are considered

    Optimized cyber-attack detection method of power systems using sliding mode observer

    No full text
    This paper investigates the problem of automatic detection of cyber-attacks in cyber-physical systems (CPSs), where some of the state variables are corrupted by an attacker. An attack detector based on a sliding mode observer (SMO) is used to estimate the state attacks. The parameter values of the SMO-based detector have a significant role in attack detection time and also in attack detection accuracy. An on-time attack detection gives the operator or the automatic attack defender enough time to react efficiently against attacks. Moreover, attacks should be detected accurately in each state variable to be handled well. Hence, a new SMO-based attack detector with parameter adjustment is addressed in this paper using an optimization algorithm. The differential evolutionary algorithm is used to optimize detection time and detection accuracy in the presence of unknown attack vectors and adjust parameters such that attacks are detected correctly and as quickly as possible. The comparison of the simulation results on the IEEE 39-bus test system based on the proposed method and those of other available methods illustrate the capability of the optimized attack detection scheme in terms of detection accuracy and detection time in the presence of unknown attack vectors
    corecore