202 research outputs found

    Stabilisation of Na,K-ATPase structure by the cardiotonic steroid ouabain

    Get PDF
    Cardiotonic steroids such as ouabain bind with high affinity to the membrane-bound cation-transporting P-type Na,K-ATPase, leading to complete inhibition of the enzyme. Using synchrotron radiation circular dichroism we show that the enzyme-ouabain complex is less susceptible to thermal denaturation (unfolding) than the ouabain-free enzyme, and this protection is observed with Na,K-ATPase purified from pig kidney as well as from shark rectal glands. It is also shown that detergent-solubilised preparations of Na,K-ATPase are stabilised by ouabain, which could account for the successful crystallisation of Na,K-ATPase in the ouabain-bound form. The secondary structure is not significantly affected by the binding of ouabain. Ouabain appears however, to induce a reorganization of the tertiary structure towards a more compact protein structure which is less prone to unfolding; recent crystal structures of the two enzymes are consistent with this interpretation. These circular dichroism spectroscopic studies in solution therefore provide complementary information to that provided by crystallography

    A Single-Domain Antibody Targeting Complement Component C5 Acts as a Selective Inhibitor of the Terminal Pathway of the Complement System and Thus Functionally Mimicks the C-Terminal Domain of the Staphylococcus aureus SSL7 Protein

    Get PDF
    The complement system is an efficient anti-microbial effector mechanism. On the other hand abnormal complement activation is involved in the pathogenesis of multiple inflammatory and hemolytic diseases. As general inhibition of the complement system may jeopardize patient health due to increased susceptibility to infections, the development of pathway-specific complement therapeutics has been a long-lasting goal over the last decades. In particular, pathogen mimicry has been considered as a promising approach for the design of selective anti-complement drugs. The C-terminal domain of staphylococcal superantigen-like protein 7 (SSL7), a protein secreted by Staphylococcus aureus, was recently found to be a specific inhibitor of the terminal pathway of the complement system, providing selective inhibition of cell lysis mediated by the membrane attack complex (MAC). We describe here the selection by phage display of a humanized single-domain antibody (sdAb) mimicking the C-terminal domain of SSL7. The antibody, called sdAb_E4, binds complement C5 with an affinity in the low micromolar range. Furthermore, sdAb_E4 induces selective inhibition of MAC-mediated lysis, allowing inhibition of red blood cell hemolysis and inhibition of complement deposition on apopto-necrotic cells, while maintaining efficient bactericidal activity of the complement terminal pathway. Finally, we present preliminary results indicating that sdAb_E4 may also be efficient in inhibiting hemolysis of erythrocytes from patients with paroxysmal nocturnal hemoglobinuria. Our data provide a proof of concept for the design of a selective MAC inhibitor capable of retaining complement bacteriolytic activity and this study opens up promising perspectives for the development of an sdAb_E4-derived therapeutics with application in the treatment of complement-mediated hemolytic disorders

    An ancient family of SelB elongation factor-like proteins with a broad but disjunct distribution across archaea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SelB is the dedicated elongation factor for delivery of selenocysteinyl-tRNA to the ribosome. In archaea, only a subset of methanogens utilizes selenocysteine and encodes archaeal SelB (aSelB). A SelB-like (aSelBL) homolog has previously been identified in an archaeon that does not encode selenosysteine, and has been proposed to be a pyrrolysyl-tRNA-specific elongation factor (EF-Pyl). However, elongation factor EF-Tu is capable of binding archaeal Pyl-tRNA in bacteria, suggesting the archaeal ortholog EF1A may also be capable of delivering Pyl-tRNA to the ribosome without the need of a specialized factor.</p> <p>Results</p> <p>We have phylogenetically characterized the aSelB and aSelBL families in archaea. We find the distribution of aSelBL to be wider than both selenocysteine and pyrrolysine usage. The aSelBLs also lack the carboxy terminal domain usually involved in recognition of the selenocysteine insertion sequence in the target mRNA. While most aSelBL-encoding archaea are methanogenic Euryarchaea, we also find aSelBL representatives in Sulfolobales and Thermoproteales of Crenarchaea, and in the recently identified phylum Thaumarchaea, suggesting that aSelBL evolution has involved horizontal gene transfer and/or parallel loss. Severe disruption of the GTPase domain suggests that some family members may employ a hitherto unknown mechanism of nucleotide hydrolysis, or have lost their GTPase ability altogether. However, patterns of sequence conservation indicate that aSelBL is still capable of binding the ribosome and aminoacyl-tRNA.</p> <p>Conclusions</p> <p>Although it is closely related to SelB, aSelBL appears unlikely to either bind selenocysteinyl-tRNA or function as a classical GTP hydrolyzing elongation factor. We propose that following duplication of aSelB, the resultant aSelBL was recruited for binding another aminoacyl-tRNA. In bacteria, aminoacylation with selenocysteine is essential for efficient thermodynamic coupling of SelB binding to tRNA and GTP. Therefore, change in tRNA specificity of aSelBL could have disrupted its GTPase cycle, leading to relaxation of selective pressure on the GTPase domain and explaining its apparent degradation. While the specific role of aSelBL is yet to be experimentally tested, its broad phylogenetic distribution, surpassing that of aSelB, indicates its importance.</p

    Free Energy Simulations of a GTPase: GTP and GDP Binding to Archaeal Initiation Factor 2

    Get PDF
    International audienceArchaeal initiation factor 2 (aIF2) is a protein involved in the initiation of protein biosynthesis. In its GTP-bound, "ON" conformation, aIF2 binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and its dependence on the ON or OFF conformational state of aIF2, molecular dynamics free energy simulations (MDFE) are a tool of choice. However, the validity of the computed free energies depends on the simulation model, including the force field and the boundary conditions, and on the extent of conformational sampling in the simulations. aIF2 and other GTPases present specific difficulties; in particular, the nucleotide ligand coordinates a divalent Mg(2+) ion, which can polarize the electronic distribution of its environment. Thus, a force field with an explicit treatment of electronic polarizability could be necessary, rather than a simpler, fixed charge force field. Here, we begin by comparing a fixed charge force field to quantum chemical calculations and experiment for Mg(2+):phosphate binding in solution, with the force field giving large errors. Next, we consider GTP and GDP bound to aIF2 and we compare two fixed charge force fields to the recent, polarizable, AMOEBA force field, extended here in a simple, approximate manner to include GTP. We focus on a quantity that approximates the free energy to change GTP into GDP. Despite the errors seen for Mg(2+):phosphate binding in solution, we observe a substantial cancellation of errors when we compare the free energy change in the protein to that in solution, or when we compare the protein ON and OFF states. Finally, we have used the fixed charge force field to perform MDFE simulations and alchemically transform GTP into GDP in the protein and in solution. With a total of about 200 ns of molecular dynamics, we obtain good convergence and a reasonable statistical uncertainty, comparable to the force field uncertainty, and somewhat lower than the predicted GTP/GDP binding free energy differences. The sign and magnitudes of the differences can thus be interpreted at a semiquantitative level, and are found to be consistent with the experimental binding preferences of ON- and OFF-aIF2

    The P-type ATPase inhibiting potential of polyoxotungstates.

    Get PDF
    Polyoxometalates (POMs) are transition metal complexes that exhibit a broad diversity of structures and properties rendering them promising for biological purposes. POMs are able to inhibit a series of biologically important enzymes, including phosphatases, and thus are able to affect many biochemical processes. In the present study, we analyzed and compared the inhibitory effects of nine different polyoxotungstates (POTs) on two P-type ATPases, Ca2+-ATPase from skeletal muscle and Na+/K+-ATPase from basal membrane of skin epithelia. For Ca2+-ATPase inhibition, an in vitro study was performed and the strongest inhibitors were determined to be the large heteropolytungstate K9(C2H8N)5[H10Se2W29O103] (Se2W29) and the Dawson-type POT K6[α-P2W18O62] (P2W18) exhibiting IC50 values of 0.3 and 0.6 μM, respectively. Promising results were also shown for the Keggin-based POTs K6H2[CoW11TiO40] (CoW11Ti, IC50 = 4 μM) and Na10[α-SiW9O34] (SiW9, IC50 = 16 μM), K14[As2W19O67(H2O)] (As2W19, IC50 = 28 μM) and the lacunary Dawson K12[α-H2P2W12O48] (P2W12, IC50 = 11 μM), whereas low inhibitory potencies were observed for the isopolytungstate Na12[H4W22O74] (W22, IC50 = 68 μM) and the Anderson-type Na6[TeW6O24] (TeW6, IC50 = 200 μM). Regarding the inhibition of Na+/K+-ATPase activity, for the first time an ex vivo study was conducted using the opercular epithelium of killifish in order to investigate the effects of POTs on the epithelial chloride secretion. Interestingly, 1 μM of the most potent Ca2+-ATPase inhibitor, Se2W29, showed only a minor inhibitory effect (14% inhibition) on Na+/K+-ATPase activity, whereas almost total inhibition (99% inhibition) was achieved using P2W18. The remaining POTs exhibited similar inhibition rates on both ATPases. These results reveal the high potential of some POTs to act as P-type ATPase inhibitors, with Se2W29 showing high selectivity towards Ca2+-ATPase.info:eu-repo/semantics/submittedVersio

    The antibacterial activity of polyoxometalates: structures, antibiotic effects and future perspectives

    Get PDF
    Polyoxometalates (POMs) are, mostly anionic, metal oxide compounds that span a wide range of tunable physical and chemical features rendering them very interesting for biological purposes, an continuously emerging but little explored field. Due to their biological and biochemical effects, including antitumor, -viral and -bacterial properties, POMs and POM-based systems are considered as promising future metallodrugs. In this article, we focus on the antibacterial activity of POMs and their therapeutic potential in the battle against bacteria and their increasing resistance against pharmaceuticals. Recent advances in the synthesis of POMs are highlighted, with emphasis on the development and properties of biologically active POM-based hybrid and nanocomposite structures. By analysing the antibacterial activity and structure of POMs, putative mode of actions are provided, including potential targets for POM–protein interactions, and a structure–activity-relationship was established for a series of POMs against two bacteria, namely Helicobacter pylori and Streptococcus pneumoniae.info:eu-repo/semantics/publishedVersio

    Rôle du facteur d'initiation e/aIF2 dans le démarrage de la traduction chez les Eucaryotes et chez les archées.

    No full text
    Eukaryotic and archaeal initiation factors 2 (e/aIF2) are heterotrimeric proteins (αβγ) that supply the small ribosomal subunit with methionylated initiator tRNA, therefore insuring specific recognition of the start codon on mRNA. The structure of aIF2γfrom the archaeon P. abyssi was previously solved in our laboratory. The γsubunit, which forms the core of the heterotrimer, is a close structural homologue of bacterial elongation factor EF1A. However, it displays specific features that could account for its specific role in translation initiation. One of the main goals of this work has been to design an in vitro assay to follow the association between aIF2 and Met-tRNAi Met. This test enabled us to identify determinants of Met-tRNAi Met important for its recognition by aIF2 and to investigate the role of each subunit of aIF2 in tRNA binding. On the one hand, the methionine moiety of initiator tRNA is a crucial determinant for Met-tRNAi Met recognition by aIF2 while the other nucleotidic determinants have only a minor role. On the other hand, the γsubunit alone is able to bind Met-tRNAi Met in a manner similar to that of EF1A. But its affinity for the tRNA molecule is strongly reduced in comparison to the affinity of the intact heterotrimer. Therefore, at least one other subunit must play a role in this interaction. Indeed, the αsubunit is required to have a full tRNA binding while βhas no role in this interaction. Within the αsubunit, domain 3 binds the γsubunit via an idiosyncratic loop located in domain 2 of aIF2γ. Moreover, the αD3γ heterodimer is necessary and sufficient to have an optimal affinity for Met-tRNAi Met. In a second step, we obtained crystals of the intact aIF2αand of a truncated version of αformed of only domains 2 and 3. The structures ofαD2-3 and αwere solved at 2.26 and 3.37 Å resolution, respectively. The three-domain organisation of αis conserved in Eukarya and Archaea. Domains 1 and 2 form a rigid body which is linked to a third mobile domain. Sequence comparisons established that the most conserved regions in aIF2αlie at opposite sides of the protein, within domain 1 and domain 3. Both domains show general RNA binding properties. Thereby, domain 1 could interact with either rRNA or mRNA on the ribosome. Finally, crystals of aIF2αγfrom Sulfolobus solftaricus were obtained and the structure of the heterodimer was solved and refined to 3.0 Å resolution. This structure confirmed biochemical data previously obtained: αD3 connects domain 2 of the γsubunit via the L1 loop of γ. For the first time in an aIF2γstructure, conformation of the two switch regions of γ involved in GTP binding are similar to those encountered in the EF1A:GTP:Phe-tRNAPhe complex. Comparison with the EF1A structure suggests that only the γsubunit of the aIF2αγ heterodimer contacts tRNA. Because the αsubunit markedly reinforces the affinity of the γ subunit for tRNA, a contribution of αto the switch movements observed in the γstructure is considered.Le facteur hétérotrimérique e/aIF2 joue un rôle central dans le démarrage de la traduction chez les Eucaryotes et chez les Archées. Il conduit l'ARNt initiateur méthionylé jusqu'au ribosome et assure la spécificité de sélection du codon de démarrage sur l'ARNm. La structure cristallographique d'aIF2de l'archée Pyrococcus abyssi, précédemment résolue au laboratoire, a révélé une très forte homologie entre aIF2γ, qui constitue le coeur de l'hétérotrimère, et le facteur d'élongation bactérien EF1A. Cependant, possède des caractéristiques structurales propres qui pourraient être responsables de sa spécificité d'action dans le démarrage de la traduction. Une étape cruciale de ce travail a consisté à développer un test de suivi in vitro de l'association d'aIF2 au Met-ARNti Met. Ce test a permis d'évaluer l'importance des caractéristiques du Met-ARNti Met et la contribution de chacune des sous-unités de l'hétérotrimère dans la formation du complexe aIF2:Met-ARNti Met. Ainsi, il a été montré que le résidu méthionine constitue un déterminant majeur dans la reconnaissance du Met-ARNti Met par aIF2. D'autre part, il apparaît que la sous-unité seule est effectivement capable de lier l'ARNt selon un mode similaire à celui observé pour EF1A mais avec une affinité considérablement réduite par rapport à celle de l'hétérotrimère. Nous avons montré que la présence de la sous-unité αétait nécessaire pour retrouver une affinité optimale vis-à-vis de l'ARNt tandis que la sous-unité βne semble pas jouer de rôle dans cette liaison. L'utilisation d'une stratégie de découpage d'en domaines séparés a montré que c'est le domaine 3 d'aIF2qui lie la sous-unité par l'intermédiaire d'une boucle du domaine 2 de . De plus, le dimère D3semble nécessaire et suffisant pour retrouver une affinité pour l'ARNt comparable à celle du facteur natif. Dans un second temps, des cristaux de la sous-unité entière et d'une forme tronquée correspondant aux domaines 2 et 3 ont été obtenus. Les structures d'D2-3 et d'complet ont été résolues à respectivement 2.26 et 3.37 Å de résolution. L'analyse du modèle structural a révélé une mobilité du domaine 3 d'αpar rapport au bloc rigide formé par les domaines 1 et 2. La comparaison de séquences d'e/aIF2a montré que les zones de conservation d'se situaient principalement dans le domaine 1 et dans le domaine 3 de la protéine, qui possèdent tous les deux des propriétés générales de liaison des ARNs. Le domaine 1 d'αpourrait ainsi interagir avec un autre partenaire de type ARN du démarrage de la traduction, tel que l'ARNm ou l'ARN ribosomal. Finalement, des cristaux d'aIF2de Sulfolobus solfataricus ont été obtenus et la structure de l'hétérodimère a été résolue à 3.0 Å. Cette structure a confirmé les données biochimiques précédemment obtenues : le domaine 3 de la sous-unité interagit avec le domaine 2 de , au niveau de la boucle L1 précédemment caractérisée. L'analyse de cette structure a révélé pour la première fois une conformation des régions Switch de similaire à celle observée au sein du complexe EF1A:GDPNP:ARNt, ce qui permet d'expliquer la GTPdépendance de la fixation du Met-ARNti Met par aIF2. La comparaison de cette structure à celle d'EF1A suggère que seule γpourrait être en contact avec l'ARNt au sein de l'hétérodimère αγ. Le renforcement de l'affinité pour l'ARNt observé en présence d'αnous a conduit à envisager un rôle possible d'αdans l'établissement des conformations observées pour les régions Switch dans la structure d'aIF2γ

    Rôle du facteur d'initiation e/aIF2 dans le démarrage de la traduction chez les eucaryotes et chez les archées

    No full text
    PALAISEAU-Polytechnique (914772301) / SudocSudocFranceF
    corecore