134 research outputs found

    Comparison of Shiga toxin-encoding bacteriophages in highly pathogenic strains of Shiga toxin-producing Escherichia coli O157:H7 in the UK

    Get PDF
    Over the last 35 years in the UK, the burden of Shiga toxin-producing Escherichia coli (STEC) O157:H7 infection has, during different periods of time, been associated with five different sub-lineages (1983-1995, Ia, I/IIa and I/IIb; 1996-2014, Ic; and 2015-2018, IIb). The acquisition of a stx2a-encoding bacteriophage by these five sub-lineages appears to have coincided with their respective emergences. The Oxford Nanopore Technologies (ONT) system was used to sequence, characterize and compare the stx-encoding prophages harboured by each sub-lineage to investigate the integration of this key virulence factor. The stx2a-encoding prophages from each of the lineages causing clinical disease in the UK were all different, including the two UK sub-lineages (Ia and I/IIa) circulating concurrently and causing severe disease in the early 1980s. Comparisons between the stx2a-encoding prophage in sub-lineages I/IIb and IIb revealed similarity to the prophage commonly found to encode stx2c, and the same site of bacteriophage integration (sbcB) as stx2c-encoding prophage. These data suggest independent acquisition of previously unobserved stx2a-encoding phage is more likely to have contributed to the emergence of STEC O157:H7 sub-lineages in the UK than intra-UK lineage to lineage phage transmission. In contrast, the stx2c-encoding prophage showed a high level of similarity across lineages and time, consistent with the model of stx2c being present in the common ancestor to extant STEC O157:H7 and maintained by vertical inheritance in the majority of the population. Studying the nature of the stx-encoding bacteriophage contributes to our understanding of the emergence of highly pathogenic strains of STEC O157:H7

    A nanobody targeting the translocated intimin receptor inhibits the attachment of enterohemorrhagic E. coli to human colonic mucosa

    Get PDF
    Enterohemorrhagic E. coli (EHEC) is a human intestinal pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome. No vaccines or specific therapies are currently available to prevent or treat these infections. EHEC tightly attaches to the intestinal epithelium by injecting the intimin receptor Tir into the host cell via a type III secretion system (T3SS). In this project, we identified a camelid single domain antibody (nanobody), named TD4, that recognizes a conserved Tir epitope overlapping the binding site of its natural ligand intimin with high affinity and stability. We show that TD4 inhibits attachment of EHEC to cultured human HeLa cells by preventing Tir clustering by intimin, activation of downstream actin polymerization and pedestal formation. Furthermore, we demonstrate that TD4 significantly reduces EHEC adherence to human colonic mucosa in in vitro organ cultures. Altogether, these results suggest that nanobody-based therapies hold potential in the development of much needed treatment and prevention strategies against EHEC infection

    Inflammation and performance status:the cornerstones of prognosis in advanced cancer

    Get PDF
    Context: In advanced cancer, although performance status (PS), systemic inflammatory response and nutritional status are known to have prognostic value, geographical variations and sociodemographic indexes may also impact survival. Objectives: This study compares validated prognostic factors in two international cohorts and establishes a prognostic framework for treatment. Methods: Two international biobanks of patients (n=1.518) with advanced cancer were analyzed. Prognostic factors (Eastern Cooperative Oncology Group Performance Status [ECOG-PS], body mass index [BMI] and modified Glasgow Prognostic Score [mGPS]) were assessed. The relationship between these and survival was examined using Kaplan–Meier and Cox regression methods. Results: According to multivariate analysis, in the European cohort the most highly predictive factors were BMI <20 kg/m2 (hazard ratio [HR] 1.644), BMI 20-21.9 kg/m2 (HR 1.347), ECOG-PS (HR 1.597–11.992) and mGPS (HR 1.843–2.365). In the Brazilian cohort, the most highly predictive factors were ECOG-PS (HR 1.678–8.938) and mGPS (HR 2.103–2.837). Considering gastrointestinal cancers in particular (n=551), the survival rate at 3 months in both cohorts together ranged from 93% (mGPS 0, PS 0–1) to 0% (mGPS 2, PS 4), and from 81% (mGPS 0, BMI >28 kg/m2) to 44% (mGPS 2, BMI <20 kg/m2). Conclusion: The established prognostic factors that were compared had similar prognostic capacity in both cohorts. A high ECOG-PS and a high mGPS as outlined in the ECOG-PS/mGPS framework were consistently associated with poorer survival of patients with advanced cancer in the prospective European and Brazilian cohorts

    Attenuation of myocardial reperfusion injury in pigs by Mirococept, a membrane-targeted complement inhibitor derived from human CR1

    Get PDF
    Objectives Membrane-targeted application of complement inhibitors may ameliorate ischemia/reperfusion (I/R) injury by directly targeting damaged cells. We investigated whether Mirococept, a membrane-targeted, myristoylated peptidyl construct derived from complement receptor 1 (CR1) could attenuate I/R injury following acute myocardial infarction in pigs. Methods In a closed-chest pig model of acute myocardial infarction, Mirococept, the non-tailed derivative APT154, or vehicle was administered intracoronarily into the area at risk 5 min pre-reperfusion. Infarct size, cardiac function and inflammatory status were evaluated. Results Mirococept targeted damaged vasculature and myocardium, significantly decreasing infarct size compared to vehicle, whereas APT154 had no effect. Cardioprotection correlated with reduced serum troponin I and was paralleled by attenuated local myocardial complement deposition and tissue factor expression. Myocardial apoptosis (TUNEL-positivity) was also reduced with the use of Mirococept. Local modulation of the pro-inflammatory and pro-coagulant phenotype translated to improved left ventricular end-diastolic pressure, ejection fraction and regional wall motion post-reperfusion. Conclusions Local modification of a pro-inflammatory and pro-coagulant environment after regional I/R injury by site-specific application of a membrane-targeted complement regulatory protein may offer novel possibilities and insights into potential treatment strategies of reperfusion-induced injur

    Convalescent Plasma Therapy in Four Critically Ill Pediatric Patients With Coronavirus Disease 2019: A Case Series

    Get PDF
    Background: Coronavirus disease 2019 is a pandemic with no specific therapeutic agents or vaccination. Small published case series on critically ill adults suggest improvements in clinical status with minimal adverse events when patients receive coronavirus disease 2019 convalescent plasma, but data on critically ill pediatric patients are lacking. We report a series of four critically ill pediatric patients with acute respiratory failure who received coronavirus disease 2019 convalescent plasma as a treatment strategy for severe disease. Case Summary:  Patients ranged in age from 5 to 16 years old. All patients received coronavirus disease 2019 convalescent plasma within the first 26 hours of hospitalization. Additional disease modifying agents were also used. All patients made a full recovery and were discharged home off of oxygen support. No adverse events occurred from the coronavirus disease 2019 convalescent plasma transfusions. Conclusion: Coronavirus disease 2019 convalescent plasma is a feasible therapy for critically ill pediatric patients infected with severe acute respiratory syndrome coronavirus 2. Well-designed clinical trials are necessary to determine overall safety and efficacy of coronavirus disease 2019 convalescent plasma and additional treatment modalities in pediatric patients

    An optimised protocol for detection of SARS-CoV-2 in stool

    Get PDF
    Background SARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for faecal-oral transmission. Compared to nasopharyngeal swab samples, the complexity of the stool matrix poses a challenge in the detection of the virus that has not yet been solved. However, robust and reliable methods are needed to estimate the prevalence and persistence of SARS-CoV-2 in the gut and to ensure the safety of microbiome-based procedures such as faecal microbiota transplant (FMT). The aim of this study was to establish a sensitive and reliable method for detecting SARS-CoV-2 in stool samples. Results Stool samples from individuals free of SARS-CoV-2 were homogenised in saline buffer and spiked with a known titre of inactivated virus ranging from 50 to 750 viral particles per 100 mg stool. Viral particles were concentrated by ultrafiltration, RNA was extracted, and SARS-CoV-2 was detected via real-time reverse-transcription polymerase chain reaction (RT-qPCR) using the CDC primers and probes. The RNA extraction procedure we used allowed for the detection of SARS-CoV-2 via RT-qPCR in most of the stool samples tested. We could detect as few as 50 viral particles per 100 mg of stool. However, high variability was observed across samples at low viral titres. The primer set targeting the N1 region provided more reliable and precise results and for this primer set our method had a limit of detection of 1 viral particle per mg of stool. Conclusions Here we describe a sensitive method for detecting SARS-CoV-2 in stool samples. This method can be used to establish the persistence of SARS-CoV-2 in stool and ensure the safety of clinical practices such as FMT. </jats:sec

    Deadly diving? Physiological and behavioural management of decompression stress in diving mammals

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the Royal Society B Biological Sciences 279 (2012): 1041-1050, doi:10.1098/rspb.2011.2088.Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.This paper and the workshop it stemmed from were funded by the Woods Hole Oceanographic Institution Marine Mammal Centre

    Recognizing animal personhood in compassionate conservation

    Get PDF
    Compassionate conservation is based on the ethical position that actions taken to protect biodiversity should be guided by compassion for all sentient beings. Critics argue that there are 3 core reasons harming animals is acceptable in conservation programs: the primary purpose of conservation is biodiversity protection; conservation is already compassionate to animals; and conservation should prioritize compassion to humans. We used argument analysis to clarify the values and logics underlying the debate around compassionate conservation. We found that objections to compassionate conservation are expressions of human exceptionalism, the view that humans are of a categorically separate and higher moral status than all other species. In contrast, compassionate conservationists believe that conservation should expand its moral community by recognizing all sentient beings as persons. Personhood, in an ethical sense, implies the individual is owed respect and should not be treated merely as a means to other ends. On scientific and ethical grounds, there are good reasons to extend personhood to sentient animals, particularly in conservation. The moral exclusion or subordination of members of other species legitimates the ongoing manipulation and exploitation of the living worlds, the very reason conservation was needed in the first place. Embracing compassion can help dismantle human exceptionalism, recognize nonhuman personhood, and navigate a more expansive moral space

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H
    corecore