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Abstract

Background: SARS-CoV-2 has been detected in stool samples of COVID-19 patients, with potential implications for
faecal-oral transmission. Compared to nasopharyngeal swab samples, the complexity of the stool matrix poses a
challenge in the detection of the virus that has not yet been solved. However, robust and reliable methods are
needed to estimate the prevalence and persistence of SARS-CoV-2 in the gut and to ensure the safety of
microbiome-based procedures such as faecal microbiota transplant (FMT). The aim of this study was to establish a
sensitive and reliable method for detecting SARS-CoV-2 in stool samples.

Results: Stool samples from individuals free of SARS-CoV-2 were homogenised in saline buffer and spiked with a
known titre of inactivated virus ranging from 50 to 750 viral particles per 100 mg stool. Viral particles were
concentrated by ultrafiltration, RNA was extracted, and SARS-CoV-2 was detected via real-time reverse-transcription
polymerase chain reaction (RT-qPCR) using the CDC primers and probes. The RNA extraction procedure we used
allowed for the detection of SARS-CoV-2 via RT-qPCR in most of the stool samples tested. We could detect as few
as 50 viral particles per 100 mg of stool. However, high variability was observed across samples at low viral titres.
The primer set targeting the N1 region provided more reliable and precise results and for this primer set our
method had a limit of detection of 1 viral particle per mg of stool.

Conclusions: Here we describe a sensitive method for detecting SARS-CoV-2 in stool samples. This method can be
used to establish the persistence of SARS-CoV-2 in stool and ensure the safety of clinical practices such as FMT.
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Background
The global pandemic caused by SARS-CoV-2, poses an
imminent threat to the global population. From Decem-
ber 2019 until the 22nd of June 2021, the number of
confirmed cases stands at 179 million and rising, leading
to an unprecedented challenge on health systems inter-
nationally. SARS-CoV-2 causes severe acute respiratory
syndrome - infecting human cells by binding to the

receptor angiotensin converting enzyme 2 (ACE2).
ACE2 is an inflammation regulator expressed by epithe-
lial cells located in the lung, liver, and gastrointestinal
tract. It has been reported that gastrointestinal symp-
toms, such as diarrhoea, nausea, and vomiting, may be
observed in up to 61 % of cases [1]. These gastrointes-
tinal symptoms may be linked to the severity of the
COVID-19 disease based on viral load and the degree of
viral replication in the gut [2–5]. SARS-CoV-2 RNA has
been detected in patient stool both during infection and
after patients have apparently recovered – indicated by a
lack of viral detection from nasal swab [6]. Viable SARS-
CoV-2 has been isolated from stool samples [6–8],
which suggests that there is a potential risk of faecal-oral
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transmission [9–13]. Hence, monitoring the viral load in
stool is of crucial importance to maintain public health
and limit viral spreading. A few studies have reported
that the viral load in stool samples (102-107 genome cop-
ies mL− 1) is several orders of magnitude lower than in
saliva (108 genome copies mL− 1) [14, 15]. However,
methods for the detection of the virus in stool have been
poorly described. Robust and reliable methods are an ur-
gent need, as microbiota-based therapies such as faecal
microbiota transplantation (FMT) would need to rely
heavily on the accurate screening of donor stools to en-
sure the absence of SARS-CoV-2 and guarantee patient
safety [16].
For both nasal swabs and saliva samples, RT-qPCR is

the most used diagnostic tool for detecting SARS-CoV-
2, with many assays targeting the SARS-CoV-2 nucleo-
capsid (N) gene [17, 18]. For example, the commonly
used Centers for Disease Control and Prevention (CDC)
RT-qPCR test targets two regions of the N gene (N1 and
N2). However, the faecal matrix has properties distinct
from those of respiratory samples [19–21], therefore
making the reliable detection of SARS-CoV-2 challen-
ging. Recently, a few methods have been described for
the detection of SARS-CoV-2 in stool samples [16, 22,
23]. However, the potentially low concentration of
SARS-CoV-2 in faeces and the unique features of the
sample matrix require optimised protocols to improve
the recovery of viral RNA and increase our ability to de-
tect the virus in stool samples. To address this need, we
developed a reliable and sensitive method for SARS-
CoV-2 detection in stool.

Results
Several recent studies indicate that viable SARS-CoV-2
can be detected in stool samples of COVID-19 patients
[6, 7], suggesting that a possible risk for faecal-oral
transmission exists. However, methods for the detection
of SARS-CoV-2 in stool have been poorly assessed so
far, and an optimised protocol is currently missing.
Here, we describe an optimised protocol (Fig. 1A) to im-
prove the detection of SARS-CoV-2 in stool samples.
We performed our experiments using samples collected
either before the current pandemic started (before Octo-
ber 2019) or from healthy donors who did not display
and had not previously displayed symptoms of COVID-
19. We used a commercially available SARS-CoV-2
stock, which was quantified through digital PCR by the
manufacturer and was therefore used to infer the limit
of detection of our approach. Extracted RNA samples
were then used to detect SARS-CoV-2 via RT-qPCR
with primer sets N1 and N2 [24]. We assessed how vari-
ous steps throughout the RNA extraction influence the
detection of SARS-CoV-2 in stool and report

recommendations for optimizing these procedures in fu-
ture clinical settings.
First, we spiked different volumes of an inactivated

viral stock in stool samples and extracted the RNA with
or without ultrafiltration (Supplementary Table 1). We
obtained positive amplifications for both the N1 and N2
regions using both approaches. Without ultrafiltration
we obtained positive amplifications with both N1 and
N2 primer sets down to 2900 viral particles (vp) per
100 mg. In contrast, the addition of ultrafiltration
allowed us to detect positive amplifications with both
primer sets down to 725 vp per 100 mg (Supplementary
Table 1). Hence, for all further tests we included an
ultrafiltration step in our protocol. We then assessed
what viral concentration was more reliably detected
across stool types. Thus, we used a viral stock that had
been accurately quantified using digital PCR and we
spiked three stool samples using concentrations ranging
from 50 to 750 vp per 100 mg. We were able to detect
SARS-CoV-2 in all the stool samples we tested. The low-
est concentration we could detect was 50 vp per 100 mg
(Table 1), but a high variability amongst samples was ob-
served for the lower concentrations (50–200 vp per
100 mg). This variability might be the result of the stool
characteristics, for example, mucus and fibre content, as
it has been previously reported that stool features can
inhibit molecular assays [19–21].
We then selected the two lowest concentrations that

gave reliable results (100 and 200 vp per 100 mg) to esti-
mate the limit of detection (LoD) of our method. The
stool sample used to determine the LoD was exclusively
used for this experiment (i.e. was not used to create the
previous datasets). We performed repeated extractions
after spiking the homogenised stool sample with 100 vp
per 100 mg (6 replicates in total) and 200 vp per 100 mg
(7 replicates in total). As negative control, we also ex-
tracted 6 non-spiked stool aliquots, all of which resulted
negative in the RT-qPCR assay. For the N1 primer
set all samples spiked with either 100 or 200 vp per
100 mg resulted positive in the RT-qPCR assay (Table 2).
In contrast, for the N2 primer set, 3 out of 6 and 7 out
of 7 samples gave positive amplification for the 100 and
200 vp per 100 mg spikes, respectively (Table 2). Based
on this data our approach has a LoD, defined as the low-
est concentration at which all tested samples gave posi-
tive results in at least one RT-qPCR replicate, of 100 vp
per 100 mg (1 vp mg− 1) for the N1 primer set and 200
vp per 100 mg (2 vp mg− 1) for the N2 primer set. These
data are consistent with previous reports that
highlighted the higher sensitivity of the N1 assay com-
pared to the N2 assay [25].
Subsequently, we tested our method on 24 additional

stool samples to estimate the variability in detection
based on stool type and infer the specificity and
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sensitivity of our assay. We were able to detect the virus
reproducibly and consistently across the majority of the
samples with average Ct values ranging from 32.6 to
38.2 and from 32.0 to 37.7 for the N1 and N2 regions,
respectively (Fig. 2). Using these 24 samples we esti-
mated that our method has a sensitivity and a specificity
of 100 % for both the N1 and N2 primer set (Table 3).
As we consistently detected viral particles in stool

samples diluted in saline buffer, we investigated whether
homogenising faecal material in the Qiagen AVL buffer

would affect RNA recovery. For this test, we used the
same three stool samples initially used to assess the low-
est viral load detectable. When Qiagen AVL buffer was
used, a higher variability was observed across samples
(Table 1). Furthermore, we observed that the faecal ma-
terial does not fully homogenise in the AVL buffer (Sup-
plementary Fig. 1), suggesting that this might potentially
affect the release of viral particles from the stool matrix.
Faecal material could potentially inhibit the PCR af-

fecting the sensitivity and reproducibility of molecular

Fig. 1 A Overview of our optimised method for SARS-CoV-2 detection in stool samples. B Schematic representation of the
experiments conducted
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assays. Hence, we performed serial dilutions of a selected
stool sample, spiked them with the same amount of
virus (50 vp per dulution), and processed them using
our method. This was done to verify whether a decreas-
ing amount of faecal material would affect Ct values.
Higher sample dilutions did not decrease Ct values nor
increased the consistency of positive qPCR results (Sup-
plementary Fig. 2).
Finally, we applied our method to saliva samples

(Fig. 2). We could consistently detect the spiked virus in
all saliva samples tested. Moreover, we observed that
doubling the vp concentration clearly resulted in a de-
crease of Ct values. This trend was not observed in the
24 stool samples we processed (Fig. 2). Hence, we rec-
ommend using our approach as a qualitative rather than
quantitative method.

Discussion
Initial reports indicate that the concentration of SARS-
CoV-2 in stool might be several orders of magnitude
lower than in saliva [14, 15]. Moreover, the complexity
of the stool matrix can affect the precision of molecular
testing [19–21], posing additional challenges for the de-
tection of the virus in stool samples. Hence, methods
that can account for these limitations are needed to
allow a robust and reliable detection of the virus in fae-
ces. By concentrating the viral particles via

ultrafiltration, we were able to develop a sensitive
method to detect SARS-CoV-2 in faeces, with a LoD of
1000 vp g− 1 for N1 and 2000 vp g− 1 for N2. To the best
of our knowledge, this is the lowest LoD so far described
[16, 26]. Manzoor et al. reported a LoD of 204 vp g− 1

[27]. However, this was calculated as the lowest copy
number that could be detected in stool spiked with ex-
tracted RNA, without considering the reproducibility of
this measure across multiple replicates as we have re-
ported in our study.
The method we describe has high sensitivity and speci-

ficity. It is worth noting that roughly half of the initial
faecal slurry was used after centrifugation (500–600 µL
of the 1 mL in which 100 mg stool was homogenised).
Hence, if we assume a homogeneous suspension, the Ct
values we obtained are from roughly half the initial
number of viral particles spiked. Moreover, following the
recommendation in the RNA extraction kit manufac-
ture’s protocol we eluted the extract twice with 40 µL
buffer. Although the elution with this volume (2 × 40
µL) might increase the total yield of RNA, an elution
with lower volume could result in a more concentrated
extract and therefore, increase the sensitivity of the RT-
qPCR assay. Altogether these data indicate that, poten-
tially, our method has room for further improvements
by enhancing the separation between debris and super-
natant to recover higher fractions of the slurry used in

Table 1 Ct values of RT-qPCR using RNA extracted from sample homogenised in saline buffer and AVL buffer

Viral
loada

Saline buffer AVL buffer

Stool 1 Stool 2 Stool 3 Stool 1 Stool 2 Stool 3

N1-mean N2-mean N1-mean N2-mean N1-mean N2-mean N1-mean N2-mean N1-mean N2-mean N1-mean N2-mean

0 - - - - - - - - - - - -

50 34.8 36.2 - - - 33.5 35.2 - - - -

100 34.8 36.3 - - 34.2 32.5 34.9 35.2 - - - -

150 34.6 35.3 35.8 - 34.9 33.9 33.8 34.7 36.4 - - -

200 34.2 34.0 35.9 - 34.2 33.0 33.5 33.9 35.8 - 37.2 -

250 34.0 34.6 35.4 - 34.8 33.6 35.0 36.0 36.7 - 36.0 -

500 32.8 33.6 34.2 - 33.7 33.5 35.1 36.3 36.2 - 35.4 36.7

750 32.7 33.7 35.4 33.8 33.5 33.9 36.0 - 36.6 - 33.1 34.8
a Numbers of viral particles spiked in 100 mg of stool
- = Sample showed no Ct value

Table 2 Overview of the limit of detected (LoD) experiments

N1 N2

Viral particles in 100 mg 100 200 100 200

Number of replicates 6 7 6 7

SARS-CoV-2 positivea 6 (100 %) 7 (100 %) 3 (50 %) 7 (100 %)

Mean Ct (st. dev) 32.6 (± 0.8) 31.4 (± 0.5) 32.8 (± 0.4) 32.1 (± 0.5)
a Samples were considered positive if at least one RT-qPCR replicate showed Ct values < 40
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the RNA extraction and by using smaller volumes for
RNA elution.
We report that diluting the stool samples in AVL leads

to less accurate results. This observation is particularly
relevant because in several studies, RNA has been ex-
tracted from stool samples by applying the standard
manufacturers’ protocol of the extraction kits [13, 28].
Such protocols recommend dissolving samples in extrac-
tion buffers (e.g. Qiagen AVL buffer), and are not neces-
sarily optimised for stool samples. Our data indicate that
depending on the stool matrix type, this procedure can
reduce the efficiency of the RNA extraction and possibly
underestimate the virus detection. Hence, we strongly
recommend following optimised protocol for stool, like
the one we discuss here, that require the dissolution of
the sample in saline solution before RNA extraction.

Conclusions
Here we assess the technical challenges encountered
while screening stool material for the presence of SARS-
CoV-2. We describe a robust approach to detect SARS-
CoV-2 in stool samples, having a LoD of 1 and 2 vp
mg− 1 for the N1 and N2 primer set, respectively. Al-
though we could detect as low as 50 vp per 100 mg, a
high variability can be observed between stool sample
types when viral concentrations are low. We demon-
strated that following standard manufacturer’s RNA ex-
traction protocols may not be sufficient to detect SARS-
CoV-2 in stool samples as stool consistency and hom-
ogenisation media can affect the downstream assays. To
improve detection, we strongly recommend homogenis-
ing the stool samples in saline solution first, then con-
centrating the viral particles with ultrafiltration. Our

Fig. 2 Ct values obtained for the N1 and N2 regions used to detect SARS-nCoV-2 in saliva or stool samples. The average of two technical qPCR
replicates is shown. In five stool samples only one replicate gave positive results, which have been included in the graphs

Table 3 Sensitivity and specificity of the protocol we developed. Data refer to the 24 stool samples spiked with 100 viral particles
per 100 mg. The 95 % confidence interval is reported in brackets. A sample is considered positive if a single RT-qPCR replicate with
Ct < 40 is detected for either the N1 or N2 primer set

Regions of N gene amplified Sensitivity (N = 24) Specificity (N = 24)

N1 24/24 (100 %, CI = 86–100) 24/24 (100 %, CI = 86–100)

N2 24/24 (100 %, CI = 86–100) 24/24 (100 %, CI = 86–100)
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method is sufficiently reliable to monitor the prevalence
and persistence of the viral particles in the gut and can
help in determining the safety of samples intended for
use in FMT applications. To ensure the maximal safety
for the patients, we propose that FMT donors should be
screened following the recommendations here, and
donor stool should be excluded even if a single N region
(N1 or N2) or a single replicate per region gives a posi-
tive result due to the variability introduced by the stool
matrix.

Method
Sample preparation and RNA extraction
Stool samples collected either before the COVID-19 out-
break (October 2019), or from donors who did not dis-
play and had not displayed symptoms of COVID-19
were weighed (100 mg) and homogenised in saline solu-
tion (0.89 % w:v NaCl) with a ratio of 1:10 (w:v; 100 mg
in 900 µL) by vortexing for at least 1 min. In an initial
screening phase, we assessed the effect of an ultrafiltra-
tion step aimed at enriching viral particles before RNA
extraction using a single stool sample. For these tests,
we spiked the homogenised stool with different volumes
of AMPLIRUN® TOTAL SARS-CoV-2 CONTROL (Vir-
Cell Microbiologists, Spain) and then either directly ex-
tracted the RNA using the QIAamp Viral RNA Mini Kit
(Qiagen, UK; CN 52,906) or, first enriched the viral par-
ticles by ultrafiltration and then extracted the RNA, as
described below. Since the ultrafiltration step improved
SARS-CoV-2 detection we added this step in all further
RNA extractions.
All the following experiments were performed by spik-

ing the homogenised stool samples with the inactivated
stock solution of SARS-CoV-2 positive Q control,
SCV2QC01-B, Qnostics (UK). We used this stock be-
cause it has been precisely quantified by the manufactur-
ing company using digital PCR. The stock is available by
the supplier (Randox Biosciences, UK) in transport
media at a viral concentration of 10,000 digital copies
(dC) mL− 1. The homogenised stool samples (1 mL) were
spiked with different concentrations of viral particles,
centrifuged at 4,000 g for 10 min, and then supernatants
were filtered through 0.22 µM syringe filters. Virus en-
richments were then performed using ultrafiltration
tubes (Sigma, UK; CN UFC810024) by loading 500 µL of
the filtrate and centrifuging at 2,500 g for 10 min. The
concentrated samples (around 50 µL) were used for
RNA extraction using QIAamp Viral RNA Mini Kit, fol-
lowing the protocol provided by the manufacturer. Fi-
nally, the viral RNA was eluted in two aliquots of 40 µL
buffer AVE supplied with the kit as recommended by
the manufacturer to increase the yield. An overview of
the method we developed is reported in Fig. 1A. We first
used three stool samples to assess the lowest amount of

virus detectable with our approach. The same samples
were then used to assess the effect of the solution used
to homogenise the stool (Table 1). This was done by re-
peating the above protocol and homogenising the stool
not in saline solution but in AVL Buffer (Qiagen, UK;
CN 19,089), as recommended in the QIAamp Viral RNA
Mini Kit manufacturer manual. Finally, 24 additional
stool samples were then used to verify the variability of
the assay across stool types and to infer the sensitivity
and specificity of our protocol by extracting RNA after
spiking them with 0, 100 and 200 vp per 100 mg.
An additional stool sample was then used to calculate

the limit of detection (LoD) of our method. The LoD,
defined as the lowest concentration of virus at which all
samples had at least one positive RT-qPCR replicate,
was estimated as follows. A freshly collected stool sam-
ple was diluted in saline solution in the ratio specified
above and then stored at -20o C until further processing.
After thawing, the homogenised stool sample was ali-
quoted and six and seven replicates were spiked with
100 or 200 vp per 100 mg, respectively. Six non-spiked
replicates were also prepared. Samples were processed as
described, and virus enrichment was performed using
between 500 and 600 µL of supernatant. RNA was ex-
tracted as described. To verify the absence of contamin-
ation in the reagents, we also performed RNA
extractions using kit reagents only. As positive control,
we extracted RNA from 10 µL of the original stock used
to spike the samples.
Finally, we selected one stool sample and performed

serial dilution to verify whether decreasing the level of
faecal material could improve the qPCR results. Here,
100 mg of stool was homogenised in 900 µL of saline so-
lution. Subsequently, the homogenate was diluted down
to 1:10,000 in 10-fold dilution steps. All dilutions were
spiked to a final concentration of 50 vp/sample. Samples
were processed for RNA extraction and qPCR as de-
scribed above. An overview of the experiments per-
formed in this study is reported in Fig. 1B.
We then tested our method on two saliva samples that

were collected before the start of the COVID-19 pan-
demic. Here, 100 µL of saliva was diluted in 900 µL of
saline solution and were then spiked with the inactivated
SARS-CoV-2 viral stock (SCV2QC01-B) with a final
concentration of 0, 50, 100 or 200 vp per 100 µL of sal-
iva. The samples were then processed using the same
procedure described for stool.

RT-qPCR assay
Primer sets N1 and N2 (Integrated DNA Technologies,
Belgium, 10,006,713) were used for identifying SARS-
CoV-2 with the Probe 1-Step Go No Rox or Probe 1-
Step Go Rox kits (PCR Biosystems) [24]. RT-qPCR was
then performed in a Roche LightCycler® 480 Instrument
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II or a StepOnePlus™ Real-Time PCR System (Applied
Biosystems™) using the following conditions: 50ºC
for 10 min, 95ºC for 2 min, 45 cycles of 95ºC for 5 s,
55ºC for 30 s, followed by 40ºC for 30 s. The Ct values
were calculated, and samples were considered as positive
only if they showed Cts lower than 40 cycles. RT-qPCR
was always performed using two technical replicates. As
the aim of this study was to verify the variability in de-
tecting SARS-CoV-2 in stool samples with the intention
of reporting robust guidelines for screening FMT mater-
ial, we considered positive also samples for which only 1
RT-qPCR technical replicate gave positive amplification.
To determine the 95 % confidence interval for the speci-
ficity and the sensitivity we used the binom.test function
in the R software [29].

Abbreviations
FMT: Faecal microbiota transplant; vp: Viral particles; LoD: Limit of detection
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