33 research outputs found

    Genome Evolution and the Emergence of Fruiting Body Development in Myxococcus xanthus

    Get PDF
    BACKGROUND: Lateral gene transfer (LGT) is thought to promote speciation in bacteria, though well-defined examples have not been put forward. METHODOLOGY/PRINCIPLE FINDINGS: We examined the evolutionary history of the genes essential for a trait that defines a phylogenetic order, namely fruiting body development of the Myxococcales. Seventy-eight genes that are essential for Myxococcus xanthus development were examined for LGT. About 73% of the genes exhibit a phylogeny similar to that of the 16S rDNA gene and a codon bias consistent with other M. xanthus genes suggesting vertical transmission. About 22% have an altered codon bias and/or phylogeny suggestive of LGT. The remaining 5% are unique. Genes encoding signal production and sensory transduction were more likely to be transmitted vertically with clear examples of duplication and divergence into multigene families. Genes encoding metabolic enzymes were frequently acquired by LGT. Myxobacteria exhibit aerobic respiration unlike most of the delta Proteobacteria. M. xanthus contains a unique electron transport pathway shaped by LGT of genes for succinate dehydrogenase and three cytochrome oxidase complexes. CONCLUSIONS/SIGNIFICANCE: Fruiting body development depends on genes acquired by LGT, particularly those involved in polysaccharide production. We suggest that aerobic growth fostered innovation necessary for development by allowing myxobacteria access to a different gene pool from anaerobic members of the delta Proteobacteria. Habitat destruction and loss of species diversity could restrict the evolution of new bacterial groups by limiting the size of the prospective gene pool

    ATP synthase FOF1 structure, function, and structure-based drug design

    No full text
    ATP synthases are unique rotatory molecular machines that supply biochemical reactions with adenosine triphosphate (ATP)—the universal “currency”, which cells use for synthesis of vital molecules and sustaining life. ATP synthases of F-type (FOF1) are found embedded in bacterial cellular membrane, in thylakoid membranes of chloroplasts, and in mitochondrial inner membranes in eukaryotes. The main functions of ATP synthases are control of the ATP synthesis and transmembrane potential. Although the key subunits of the enzyme remain highly conserved, subunit composition and structural organization of ATP synthases and their assemblies are significantly different. In addition, there are hypotheses that the enzyme might be involved in the formation of the mitochondrial permeability transition pore and play a role in regulation of the cell death processes. Dysfunctions of this enzyme lead to numerous severe disorders with high fatality levels. In our review, we focus on FOF1-structure-based approach towards development of new therapies by using FOF1 structural features inherited by the representatives of this enzyme family from different taxonomy groups. We analyzed and systematized the most relevant information about the structural organization of FOF1 to discuss how this approach might help in the development of new therapies targeting ATP synthases and design tools for cellular bioenergetics control
    corecore