488 research outputs found

    Hepatitis Associated with a Sarcocystis canis–like Protozoan in a Hawaiian Monk Seal (Monachus schauinslandi)

    Get PDF
    A Hawaiian monk seal (Monachus schauinslandi) died in captivity at the National Marine Fisheries Service, Kewalo Basin Facility in Honolulu, Hawaii. The animal was icteric, and the liver was friable. Microscopic lesions were detected in the colon and liver. Colonic lesions included multifocal, necrohemorrhagic colitis associated with gram-negative bacilli. The liver lesions included random hepatic necrosis and cholestasis. Asexual stages of a Sarcocystis canis–like apicomplexan were detected in hepatocytes. The parasite divided by endopolygeny. Merozoites occasionally formed rosettes around a central residual body. Ultrastructurally, merozoites lacked rhoptries. This is the first report of S. canis infection in M. schauinslandi, which is an endangered pinniped in U.S. waters

    Radio Observations of HD 80606 Near Planetary Periastron

    Full text link
    This paper reports Very Large Array observations at 325 and 1425 MHz (90cm and 20cm) during and near the periastron passage of HD 80606b on 2007 November 20. We obtain flux density limits (3-sigma) of 1.7 mJy and 48 microJy at 325 and 1425 MHz, respectively, equivalent to planetary luminosity limits of 2.3 x 10^{24} erg/s and 2.7 x 10^{23} erg/s. These are well above the Jovian value (at 40 MHz) of 2 x 10^{18} erg/s. The motivation for these observations was that the planetary magnetospheric emission is driven by a stellar wind-planetary magnetosphere interaction so that the planetary luminosity would be elevated. Near periastron, HD 80606b might be as much as 3000 times more luminous than Jupiter. Recent transit observations of HD 80606b provide stringent constraints on the planetary mass and radius, and, because of the planet's highly eccentric orbit, its rotation period is likely to be "pseudo-synchronized" to its orbital period, allowing a robust estimate of the former. We are able to make robust estimates of the emission frequency of the planetary magnetospheric emission and find it to be around 60--90 MHz. We compare HD 80606b to other high-eccentricity systems and assess the detection possibilities for both near-term and more distant future systems. Of the known high eccentricity planets, only HD 80606b is likely to be detectable, as HD 20782B b and HD 4113b are both likely to have weaker magnetic field strengths. Both the forthcoming "EVLA low band" system and the Low Frequency Array may be able to improve upon our limits for HD 80606b, and do so at a more optimum frequency. If the low-frequency component of the Square Kilometre Array (SKA-lo) and a future lunar radio array are able to approach their thermal noise limits, they should be able to detect an HD 80606b-like planet, unless the planet's luminosity increases by substantially less than a factor of 3000.Comment: 9 pages; accepted for publication in A

    A Blind Search for Magnetospheric Emissions from Planetary Companions to Nearby Solar-type Stars

    Full text link
    This paper reports a blind search for magnetospheric emissions from planets around nearby stars. Young stars are likely to have much stronger stellar winds than the Sun, and because planetary magnetospheric emissions are powered by stellar winds, stronger stellar winds may enhance the radio luminosity of any orbiting planets. Using various stellar catalogs, we selected nearby stars (<~ 30 pc) with relatively young age estimates (< 3 Gyr). We constructed different samples from the stellar catalogs, finding between 100 and several hundred stars. We stacked images from the 74-MHz (4-m wavelength) VLA Low-frequency Sky Survey (VLSS), obtaining 3\sigma limits on planetary emission in the stacked images of between 10 and 33 mJy. These flux density limits correspond to average planetary luminosities less than 5--10 x 10^{23} erg/s. Using recent models for the scaling of stellar wind velocity, density, and magnetic field with stellar age, we estimate scaling factors for the strength of stellar winds, relative to the Sun, in our samples. The typical kinetic energy carried by the stellar winds in our samples is 15--50 times larger than that of the Sun, and the typical magnetic energy is 5--10 times larger. If we assume that every star is orbited by a Jupiter-like planet with a luminosity larger than that of the Jovian decametric radiation by the above factors, our limits on planetary luminosities from the stacking analysis are likely to be a factor of 10--100 above what would be required to detect the planets in a statistical sense. Similar statistical analyses with observations by future instruments, such as the Low Frequency Array (LOFAR) and the Long Wavelength Array (LWA), offer the promise of improvements by factors of 10--100.Comment: 11 pages; AASTeX; accepted for publication in A

    An analysis of the time course of attention in preview search.

    Get PDF
    We used a probe dot procedure to examine the time course of attention in preview search (Watson and Humphreys, 1997). Participants searched for an outline red vertical bar among other new red horizontal bars and old green vertical bars, superimposed on a blue background grid. Following the reaction time response for search, the participants had to decide whether a probe dot had briefly been presented. Previews appeared for 1,000 msec and were immediately followed by search displays. In Experiment 1, we demonstrated a standard preview benefit relative to a conjunction search baseline. In Experiment 2, search was combined with the probe task. Probes were more difficult to detect when they were presented 1,200 msec, relative to 800 msec, after the preview, but at both intervals detection of probes at the locations of old distractors was harder than detection on new distractors or at neutral locations. Experiment 3A demonstrated that there was no difference in the detection of probes at old, neutral, and new locations when probe detection was the primary task and there was also no difference when all of the shapes appeared simultaneously in conjunction search (Experiment 3B). In a final experiment (Experiment 4), we demonstrated that detection on old items was facilitated (relative to neutral locations and probes at the locations of new distractors) when the probes appeared 200 msec after previews, whereas there was worse detection on old items when the probes followed 800 msec after previews. We discuss the results in terms of visual marking and attention capture processes in visual search

    Surveying the Dynamic Radio Sky with the Long Wavelength Demonstrator Array

    Full text link
    This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the site of the Very Large Array in New Mexico. The field of view of the individual dipoles was essentially the entire sky, and the number of dipoles was sufficiently small that a simple software correlator could be used to make all-sky images. From 2006 October to 2007 February, we conducted an all-sky transient search program, acquiring a total of 106 hr of data; the time sampling varied, being 5 minutes at the start of the program and improving to 2 minutes by the end of the program. We were able to detect solar flares, and in a special-purpose mode, radio reflections from ionized meteor trails during the 2006 Leonid meteor shower. We detected no transients originating outside of the solar system above a flux density limit of 500 Jy, equivalent to a limit of no more than about 10^{-2} events/yr/deg^2, having a pulse energy density >~ 1.5 x 10^{-20} J/m^2/Hz at 73.8 MHz for pulse widths of about 300 s. This event rate is comparable to that determined from previous all-sky transient searches, but at a lower frequency than most previous all-sky searches. We believe that the LWDA illustrates how an all-sky imaging mode could be a useful operational model for low-frequency instruments such as the Low Frequency Array, the Long Wavelength Array station, the low-frequency component of the Square Kilometre Array, and potentially the Lunar Radio Array.Comment: 20 pages; accepted for publication in A

    Visual onset expands subjective time

    Get PDF
    We report a distortion of subjective time perception in which the duration of a first interval is perceived to be longer than the succeeding interval of the same duration. The amount of time expansion depends on the onset type defining the first interval. When a stimulus appears abruptly, its duration is perceived to be longer than when it appears following a stationary array. The difference in the processing time for the stimulus onset and motion onset, measured as reaction times, agrees with the difference in time expansion. Our results suggest that initial transient responses for a visual onset serve as a temporal marker for time estimation, and a systematic change in the processing time for onsets affects perceived time
    • …
    corecore