19 research outputs found

    New signal processing method for multiplex pyrosequencing results analysis

    No full text
    Pyrosequencing is a DNA sequencing technology based on the sequencing-by-synthesis principle that has many applications including rapid genotyping of a broad spectrum of bacteria [1, 2]. Despite the increased use of Next Generation Sequencing for studying microbial diversity, pyrosequencing remains a cost-effective solution for genotyping short DNA stretches within bacterial genomes, hence providing rapid genetic assessment of specified microbial antibiotic resistance mechanisms [3,4]. In some cases, molecular typing may require to genotype multiple DNA stretches, each carrying a resistance determinant. Several pyrosequencing primers could be used simultaneously, with overlapping primer-specific pyrosequencing signals as main issue

    Amplicon identification using SparsE representation of multiplex PYROsequencing signal (AdvISER-M-PYRO): application to bacterial resistance genotyping

    No full text
    MOTIVATION: Pyrosequencing is a cost-effective DNA sequencing technology that has many applications, including rapid genotyping of a broad spectrum of bacteria. When molecular typing requires to genotype multiple DNA stretches, several pyrosequencing primers could be used simultaneously but this would create overlapping primer-specific signals, which are visually uninterpretable. Accordingly, the objective was to develop a new method for signal processing (AdvISER-M-PYRO) to automatically analyze and interpret multiplex pyrosequencing signals. In parallel, the nucleotide dispensation order was improved by developing the SENATOR ('SElecting the Nucleotide dispensATion Order') algorithm. RESULTS: In this proof-of-concept study, quintuplex pyrosequencing was applied on eight bacterial DNA and targeted genetic alterations underlying resistance to β-lactam antibiotics. Using SENATOR-driven dispensation order, all genetic variants (31 of 31; 100%) were correctly identified with AdvISER-M-PYRO. Among nine expected negative results, there was only one false positive that was tagged with an 'unsafe' label

    Regulation of hypoxia-inducible factor-1alpha protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3beta pathway in HepG2 cells.

    Full text link
    Hypoxia initiates an intracellular signaling pathway leading to the activation of the transcription factor hypoxia-inducible factor-1 (HIF-1). HIF-1 activity is regulated through different mechanisms involving stabilization of HIF-1alpha, phosphorylations, modifications of redox conditions, and interactions with coactivators. However, it appears that some of these steps can be cell type-specific. Among them, the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in the regulation of HIF-1 by hypoxia remains controversial. Here, we investigated the activation state of PI3K/Akt/glycogen synthase kinase 3beta (GSK3beta) in HepG2 cells. Increasing incubation times in hypoxia dramatically decreased both the phosphorylation of Akt and the inhibiting phosphorylation of GSK3beta. The PI3K/Akt pathway was necessary for HIF-1alpha stabilization early during hypoxia. Indeed, its inhibition was sufficient to decrease HIF-1alpha protein level after 5-h incubation in hypoxia. However, longer exposure (16 h) in hypoxia resulted in a decreased HIF-1alpha protein level compared with early exposure (5 h). At that time, Akt was no longer present or active, which resulted in a decrease in the inhibiting phosphorylation of GSK3beta on Ser-9 and hence in an increased GSK3beta activity. GSK3 inhibition reverted the effect of prolonged hypoxia on HIF-1alpha protein level; more stabilized HIF-1alpha was observed as well as increased HIF-1 transcriptional activity. Thus, a prolonged hypoxia activates GSK3beta, which results in decreased HIF-1alpha accumulation. In conclusion, hypoxia induced a biphasic effect on HIF-1alpha stabilization with accumulation in early hypoxia, which depends on an active PI3K/Akt pathway and an inactive GSK3beta, whereas prolonged hypoxia results in the inactivation of Akt and activation of GSK3beta, which then down-regulates the HIF-1 activity through down-regulation of HIF-1alpha accumulation

    A qPCR and multiplex pyrosequencing assay combined with automated data processing for rapid and unambiguous detection of ESBL-producers Enterobacteriaceae.

    Get PDF
    Rapid and specific detection of extended-spectrum β-lactamase-producing (ESBL) bacteria is crucial both for timely antibiotic therapy when treating infected patients as well as for appropriate infection control measures aimed at curbing the spread of ESBL-producing isolates. Whereas a variety of phenotypic methods are currently available for ESBL detection, they remain time consuming and sometimes difficult to interpret while being also affected by a lack of sensitivity and specificity. Considering the longer turnaround time (TAT) of susceptibility testing and culture results, DNA-based ESBL identification would be a valuable surrogate for phenotypic-based methods. Putative ESBL-positive Enterobacteriaceae isolates (n = 330) from clinical specimen were prospectively collected in Bulgaria, Romania and Democratic Republic of Congo and tested in this study. All isolates were assessed for ESBL-production by the E-test method and those giving undetermined ESBL status were re-tested using the combination disk test. A genotypic assay successively combining qPCR detection of blaCTX-M, blaTEM and blaSHV genes with a multiplex pyrosequencing of blaTEM and blaSHV genes was developed in order to detect the most common ESBL-associated TEM and SHV single nucleotides polymorphisms, irrespective of their plasmid and/or chromosomal location. This assay was applied on all Enterobacteriaceae isolates (n = 330). Phenotypic and genotypic results matched in 324/330 (98.2%). Accordingly, real-time PCR combined with multiplex pyrosequencing appears to be a reliable and easy-to-perform assay with high-throughput identification and fast TAT (~5 h)

    Development of a pyrosequencing assay for rapid assessment of quinolone resistance in Acinetobacter baumannii isolates.

    No full text
    Rapid and reliable assessment of Acinetobacter baumannii resistance to quinolones was successfully achieved through pyrosequencing of the gyrA and parC quinolone-resistance determining regions. A strong correlation was found between quinolone resistance and mutations in gyrA codon 83 and/or in the parC gene (codons 80 or 84). Absence of QRDR mutations was associated with susceptibility to quinolones

    Correction: Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea.

    No full text
    [This corrects the article DOI: 10.1371/journal.pmed.1001967.]

    Experimental treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial) : a historically controlled, single-arm proof-of-concept trial in Guinea

    Get PDF
    BACKGROUND:Ebola virus disease (EVD) is a highly lethal condition for which no specific treatment has proven efficacy. In September 2014, while the Ebola outbreak was at its peak, the World Health Organization released a short list of drugs suitable for EVD research. Favipiravir, an antiviral developed for the treatment of severe influenza, was one of these. In late 2014, the conditions for starting a randomized Ebola trial were not fulfilled for two reasons. One was the perception that, given the high number of patients presenting simultaneously and the very high mortality rate of the disease, it was ethically unacceptable to allocate patients from within the same family or village to receive or not receive an experimental drug, using a randomization process impossible to understand by very sick patients. The other was that, in the context of rumors and distrust of Ebola treatment centers, using a randomized design at the outset might lead even more patients to refuse to seek care. Therefore, we chose to conduct a multicenter non-randomized trial, in which all patients would receive favipiravir along with standardized care. The objectives of the trial were to test the feasibility and acceptability of an emergency trial in the context of a large Ebola outbreak, and to collect data on the safety and effectiveness of favipiravir in reducing mortality and viral load in patients with EVD. The trial was not aimed at directly informing future guidelines on Ebola treatment but at quickly gathering standardized preliminary data to optimize the design of future studies.METHODS AND FINDINGS:Inclusion criteria were positive Ebola virus reverse transcription PCR (RT-PCR) test, age ≥ 1 y, weight ≥ 10 kg, ability to take oral drugs, and informed consent. All participants received oral favipiravir (day 0: 6,000 mg; day 1 to day 9: 2,400 mg/d). Semi-quantitative Ebola virus RT-PCR (results expressed in "cycle threshold" [Ct]) and biochemistry tests were performed at day 0, day 2, day 4, end of symptoms, day 14, and day 30. Frozen samples were shipped to a reference biosafety level 4 laboratory for RNA viral load measurement using a quantitative reference technique (genome copies/milliliter). Outcomes were mortality, viral load evolution, and adverse events. The analysis was stratified by age and Ct value. A "target value" of mortality was defined a priori for each stratum, to guide the interpretation of interim and final analysis. Between 17 December 2014 and 8 April 2015, 126 patients were included, of whom 111 were analyzed (adults and adolescents, ≥13 y, n = 99; young children, ≤6 y, n = 12). Here we present the results obtained in the 99 adults and adolescents. Of these, 55 had a baseline Ct value ≥ 20 (Group A Ct ≥ 20), and 44 had a baseline Ct value < 20 (Group A Ct < 20). Ct values and RNA viral loads were well correlated, with Ct = 20 corresponding to RNA viral load = 7.7 log10 genome copies/ml. Mortality was 20% (95% CI 11.6%-32.4%) in Group A Ct ≥ 20 and 91% (95% CI 78.8%-91.1%) in Group A Ct < 20. Both mortality 95% CIs included the predefined target value (30% and 85%, respectively). Baseline serum creatinine was ≥110 μmol/l in 48% of patients in Group A Ct ≥ 20 (≥300 μmol/l in 14%) and in 90% of patients in Group A Ct < 20 (≥300 μmol/l in 44%). In Group A Ct ≥ 20, 17% of patients with baseline creatinine ≥110 μmol/l died, versus 97% in Group A Ct < 20. In patients who survived, the mean decrease in viral load was 0.33 log10 copies/ml per day of follow-up. RNA viral load values and mortality were not significantly different between adults starting favipiravir within <72 h of symptoms compared to others. Favipiravir was well tolerated.CONCLUSIONS:In the context of an outbreak at its peak, with crowded care centers, randomizing patients to receive either standard care or standard care plus an experimental drug was not felt to be appropriate. We did a non-randomized trial. This trial reaches nuanced conclusions. On the one hand, we do not conclude on the efficacy of the drug, and our conclusions on tolerance, although encouraging, are not as firm as they could have been if we had used randomization. On the other hand, we learned about how to quickly set up and run an Ebola trial, in close relationship with the community and non-governmental organizations; we integrated research into care so that it improved care; and we generated knowledge on EVD that is useful to further research. Our data illustrate the frequency of renal dysfunction and the powerful prognostic value of low Ct values. They suggest that drug trials in EVD should systematically stratify analyses by baseline Ct value, as a surrogate of viral load. They also suggest that favipiravir monotherapy merits further study in patients with medium to high viremia, but not in those with very high viremia.TRIAL REGISTRATION:ClinicalTrials.gov NCT02329054.Evaluation of the efficacy and of the antiviral activity of T-705 (favipiravir) duringEbola virus infection in non-human primates humansEbola Virus Disease - correlates of protection, determinants of outcome, and clinical managemen

    Correction: Experimental Treatment with Favipiravir for Ebola Virus Disease (the JIKI Trial): A Historically Controlled, Single-Arm Proof-of-Concept Trial in Guinea

    No full text

    JIKI trial progress.

    No full text
    <p>ALIMA, Alliance for International Medical Action; CRF, Croix Rouge Française (French Red Cross); EU, European Union; Inserm, Institut National de la Santé et de la Recherche Médicale; SSA, Service de Santé des Armées (French military health service).</p
    corecore