11 research outputs found

    Implementation of the Integrated Approach in Different Types of Exposure Scenarios

    Get PDF
    The ICRP recognises three types of exposure situations (planned, existing and emergency). In all three situations, the release of radionuclides into the natural environment leads to exposures of non-human biota, as well as the potential for exposures of the public. This paper describes how the key principles of the ICRP system of radiological protection apply to non-human biota and members of the public in each of these exposure situations. Current work in this area within ICRP Task Group (TG) 105 is highlighted. For example, how simplified numeric criteria may be used in planned exposure situations that are protective of both the public and non-human biota. In emergency exposure situations, the initial response will always be focused on human protection however, understanding the potential impacts of radionuclide releases on non-human biota will likely become important in terms of communication as governments and the public seek to understand the exposures that are occurring. For existing exposure situations, we need to better understand the potential impacts of radionuclides on animals and plants especially when deciding on protective actions. Understanding the comparative impacts from radiological, non-radiological and physical aspects is often important in managing remediating legacy sites. The TG is making use of case studies of how exposure situations have been managed in the past to provide additional guidance and advice for the protection of non-human biota

    Modelling the exposure of wildlife to radiation: key findings and activities of IAEA working groups

    Get PDF
    The International Atomic Energy Agency (IAEA) established the Biota Working Group (BWG) as part of its Environmental Modelling for Radiation Safety (EMRAS) programme in 2004 (http://www-ns.iaea.org/projects/emras/emras-biota-wg.htm). At that time both the IAEA and the International Commission on Radiological Protection (ICRP) were addressing environmental protection (i.e. protection of non-human biota or wildlife) within the on-going revisions to the Basic Safety Standards and Recommendations respectively. Furthermore, some countries (e.g. the USA, UK) were already conducting assessments in accordance with national guidelines. Consequently, a number of assessment frameworks/models had been or were being developed. The BWG was established recognising these developments and the need to improve Member State’s capabilities with respect to protection of the environment from ionizing radiation. The work of the BWG was continued within the IAEA’s EMRAS II programme by the Biota Modelling Group (http://wwwns. iaea.org/projects/emras/emras2/working-groups/working-group-four.asp)

    Making the most of what we have: Application of extrapolation approaches in radioecological wildlife transfer models

    Get PDF
    © 2015 The Authors. We will never have data to populate all of the potential radioecological modelling parameters required for wildlife assessments. Therefore, we need robust extrapolation approaches which allow us to make best use of our available knowledge. This paper reviews and, in some cases, develops, tests and validates some of the suggested extrapolation approaches.The concentration ratio (CRproduct-diet or CRwo-diet) is shown to be a generic (trans-species) parameter which should enable the more abundant data for farm animals to be applied to wild species.An allometric model for predicting the biological half-life of radionuclides in vertebrates is further tested and generally shown to perform acceptably. However, to fully exploit allometry we need to understand why some elements do not scale to expected values.For aquatic ecosystems, the relationship between log10(a) (a parameter from the allometric relationship for the organism-water concentration ratio) and log(Kd) presents a potential opportunity to estimate concentration ratios using Kd values.An alternative approach to the CRwo-media model proposed for estimating the transfer of radionuclides to freshwater fish is used to satisfactorily predict activity concentrations in fish of different species from three lakes. We recommend that this approach (REML modelling) be further investigated and developed for other radionuclides and across a wider range of organisms and ecosystems.Ecological stoichiometry shows potential as an extrapolation method in radioecology, either from one element to another or from one species to another.Although some of the approaches considered require further development and testing, we demonstrate the potential to significantly improve predictions of radionuclide transfer to wildlife by making better use of available data

    Radionuclide transfer to reptiles

    No full text
    Reptiles are an important, and often protected, component of many ecosystems but have rarely been fully considered within ecological risk assessments (ERA) due to a paucity of data on contaminant uptake and effects. This paper presents a meta-analysis of literature-derived environmental media (soil and water) to whole-body concentration ratios (CRs) for predicting the transfer of 35 elements (Am, As, B, Ba, Ca, Cd, Ce, Cm, Co, Cr, Cs, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Po, Pu, Ra, Rb, Sb, Se, Sr, Th, U, V, Y, Zn, Zr) to reptiles in freshwater ecosystems and 15 elements (Am, C, Cs, Cu, K, Mn, Ni, Pb, Po, Pu, Sr, Tc, Th, U, Zn) to reptiles in terrestrial ecosystems. These reptile CRs are compared with CRs for other vertebrate groups. Tissue distribution data are also presented along with data on the fractional mass of bone, kidney, liver and muscle in reptiles. Although the data were originally collected for use in radiation dose assessments, many of the CR data presented in this paper will also be useful for chemical ERA and for the assessments of dietary transfer in humans for whom reptiles constitute an important component of the diet, such as in Australian aboriginal communities

    Making the most of what we have: application of extrapolation approaches in radioecological wildlife transfer models

    No full text
    a b s t r a c t We will never have data to populate all of the potential radioecological modelling parameters required for wildlife assessments. Therefore, we need robust extrapolation approaches which allow us to make best use of our available knowledge. This paper reviews and, in some cases, develops, tests and validates some of the suggested extrapolation approaches. The concentration ratio (CR product-diet or CR wo-diet ) is shown to be a generic (trans-species) parameter which should enable the more abundant data for farm animals to be applied to wild species. An allometric model for predicting the biological half-life of radionuclides in vertebrates is further tested and generally shown to perform acceptably. However, to fully exploit allometry we need to understand why some elements do not scale to expected values. For aquatic ecosystems, the relationship between log 10 (a) (a parameter from the allometric relationship for the organism-water concentration ratio) and log(K d ) presents a potential opportunity to estimate concentration ratios using K d values. An alternative approach to the CR wo-media model proposed for estimating the transfer of radionuclides to freshwater fish is used to satisfactorily predict activity concentrations in fish of different species from three lakes. We recommend that this approach (REML modelling) be further investigated and developed for other radionuclides and across a wider range of organisms and ecosystems. Ecological stoichiometry shows potential as an extrapolation method in radioecology, either from one element to another or from one species to another. Although some of the approaches considered require further development and testing, we demonstrate the potential to significantly improve predictions of radionuclide transfer to wildlife by making better use of available data

    An international comparison of models and approaches for the estimation of the radiological exposure of non-human biota

    No full text
    Over the last decade a number of models and approaches have been developed for the estimation of the exposure of non-human biota to ionising radiations. In some countries these are now being used in regulatory assessments. However, to date there has been no attempt to compare the outputs of the different models used. This paper presents the work of the International Atomic Energy Agency's EMRAS Biota Working Group which compares the predictions of a number of such models in model–model and model–data inter-comparisons
    corecore