4,387 research outputs found

    Quantum electric-dipole liquid on a triangular lattice

    Get PDF
    Geometric frustrations and quantum mechanical fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets that represents an exotic phase of matter and is attracting enormous interests. Geometric frustrations and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogs to quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled small electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19, in which small electric dipoles originated from the off-center displacement of Fe3+ in the FeO5 bipyramids constitute a two-dimensional triangular lattice, represents a promising candidate to generate the anticipated electric-dipole liquid. We present a series of experimental evidences, including dielectric permittivity, heat capacity, and thermal conductivity measured down to 66 mK, to reveal the existence of a nontrivial ground state in BaFe12O19, characterized by itinerant low-energy excitations with a small gap, to which we interpret as an exotic liquid-like quantum phase. The quantum electric-dipole liquids in frustrated dielectrics open up a fresh playground for fundamental physics and may find applications in quantum information and computation as well.Comment: 13 pages, 6 figure

    Finite element modeling of girth welded pipe with multiple defects

    Get PDF
    687-698Due to the expansion of the pipeline network in the transportation of petroleum and its derivatives, it has been essential to develop studies to evaluate and guarantee the safety condition, as well as the reliability of such facilities. Welded pipelines have been widely used, and they are susceptible to corrosion. Since the heating at the welded point may leads to structural and compositional modifications in the material, which may generate corrosion. The present paper presents a nonlinear computational model burst pressure assessment in API X70 girth welded pipes with multiple defects, created by corrosion, which may represent a great risk for gases and fuel leakage during transportation. In this study, the computational model has been developed by the finite element method considering the isotropic hardening model and contact conditions between different materials involved in the analysis, with corrosion simulated as a rectangular defect. The corroded pipe and the efficiency of the computational model have been analyzed by varying the width of the heat-affected zone (HAZ), and the depth of single and multiple defects. The results obtained by using the finite element analysis have been compared with the semi-empirical methods and literature results. The computational model developed by the present work has presented satisfactory results

    Finite element modeling of girth welded pipe with multiple defects

    Get PDF
    Due to the expansion of the pipeline network in the transportation of petroleum and its derivatives, it has been essentialto develop studies to evaluate and guarantee the safety condition, as well as the reliability of such facilities. Weldedpipelines have been widely used, and they are susceptible to corrosion. Since the heating at the welded point may leads tostructural and compositional modifications in the material, which may generate corrosion. The present paper presents anonlinear computational model burst pressure assessment in API X70 girth welded pipes with multiple defects, created bycorrosion, which may represent a great risk for gases and fuel leakage during transportation. In this study, the computationalmodel has been developed by the finite element method considering the isotropic hardening model and contact conditionsbetween different materials involved in the analysis, with corrosion simulated as a rectangular defect. The corroded pipe andthe efficiency of the computational model have been analyzed by varying the width of the heat-affected zone (HAZ), and thedepth of single and multiple defects. The results obtained by using the finite element analysis have been compared with thesemi-empirical methods and literature results. The computational model developed by the present work has presentedsatisfactory results

    Realization of Polarization Control in High-Order Harmonic Generation

    Get PDF
    The nature of high-order harmonic generation process limits the harmonics emission to linear polarization. In this paper, we review the recent progress to generate elliptically or circularly polarized high-harmonic EUV pulses. We further demonstrate how complete control of polarization state of isolated high-harmonic pulse can be realized today by noncollinear focusing of two driving pulses with identical ellipticity but counter-rotating helicity. This paper opens a path towards the study of the fastest dynamics--down to attosecond time scales--in circular dichroism of magnetic materials, chiral molecules, and electronic spin motion.Taiwan Ministry of Science and Technology; Academia Sinica; Junta de Castilla y León; Ministerio de Economía y Competitividad; Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation; Ministerio de Ciencia, Innovación y Universidades for a Ramón y Cajal; European Social Fund; Ministerio de Educación, Cultura y Deporte

    Multiobjective evolutionary algorithm based on vector angle neighborhood

    Get PDF
    Selection is a major driving force behind evolution and is a key feature of multiobjective evolutionary algorithms. Selection aims at promoting the survival and reproduction of individuals that are most fitted to a given environment. In the presence of multiple objectives, major challenges faced by this operator come from the need to address both the population convergence and diversity, which are conflicting to a certain extent. This paper proposes a new selection scheme for evolutionary multiobjective optimization. Its distinctive feature is a similarity measure for estimating the population diversity, which is based on the angle between the objective vectors. The smaller the angle, the more similar individuals. The concept of similarity is exploited during the mating by defining the neighborhood and the replacement by determining the most crowded region where the worst individual is identified. The latter is performed on the basis of a convergence measure that plays a major role in guiding the population towards the Pareto optimal front. The proposed algorithm is intended to exploit strengths of decomposition-based approaches in promoting diversity among the population while reducing the user's burden of specifying weight vectors before the search. The proposed approach is validated by computational experiments with state-of-the-art algorithms on problems with different characteristics. The obtained results indicate a highly competitive performance of the proposed approach. Significant advantages are revealed when dealing with problems posing substantial difficulties in keeping diversity, including many-objective problems. The relevance of the suggested similarity and convergence measures are shown. The validity of the approach is also demonstrated on engineering problems.This work was supported by the Portuguese Fundacao para a Ciencia e Tecnologia under grant PEst-C/CTM/LA0025/2013 (Projecto Estrategico - LA 25 - 2013-2014 - Strategic Project - LA 25 - 2013-2014).info:eu-repo/semantics/publishedVersio

    A new method for evaluating lung volume: AI-3D reconstruction

    Get PDF
    Objective: This study aims to explore the clinical application of an AI-3D reconstruction system in measuring lung volume and analyze its practical value in donor-recipient size matching in lung transplantation.Methods: The study retrospectively collected data from 75 subjects who underwent a plethysmography examination and lung CT at the First Hospital of Jilin University. General data and information related to lung function, and imaging results were collected. The correlation between actual total lung volume (aTLV), predicted total lung volume (pTLV), and artificial intelligence three-dimensional reconstruction CT lung volume (AI-3DCTVol) was analyzed for the overall, male, and female groups. The correlation coefficient and the absolute error percentage with pTLV and AI-3DCTVol were obtained.Results: In the overall, male, and female groups, there were statistical differences (p <0.05) between the pTLV formula and AI-3D reconstruction compared to the plethysmography examination value. The ICC between pTLV and aTLV for all study participants was 0.788 (95% CI: 0.515–0.893), p <0.001. Additionally, the ICC value between AI-3D reconstruction and aTLV was 0.792 (95% CI: 0.681–0.866), p <0.001. For male study participants, the ICC between pTLV and aTLV was 0.330 (95% CI: 0.032–0.617), p = 0.006. Similarly, the ICC value between AI-3D reconstruction and aTLV was 0.413 (95% CI: 0.089–0.662), p = 0.007. In the case of female research subjects, the ICC between pTLV and aTLV was 0.279 (95% CI: 0.001–0.523), p = 0.012. Further, the ICC value between AI-3D reconstruction and aTLV was 0.615 (95% CI: 0.561–0.870), p <0.001.Conclusion: The AI-3D reconstruction, as a convenient method, has significant potential for application in lung transplantation

    Sunyaev-Zel'dovich clusters in millennium gas simulations

    Get PDF
    Large surveys using the Sunyaev–Zel’dovich (SZ) effect to find clusters of galaxies are now starting to yield large numbers of systems out to high redshift, many of which are new dis- coveries. In order to provide theoretical interpretation for the release of the full SZ cluster samples over the next few years, we have exploited the large-volume Millennium gas cosmo- logical N-body hydrodynamics simulations to study the SZ cluster population at low and high redshift, for three models with varying gas physics. We confirm previous results using smaller samplesthattheintrinsic(spherical)Y500–M500relationhasverylittlescatter(σlog10Y ≃0.04), is insensitive to cluster gas physics and evolves to redshift 1 in accordance with self-similar expectations. Our preheating and feedback models predict scaling relations that are in excel- lent agreement with the recent analysis from combined Planck and XMM–Newton data by the Planck Collaboration. This agreement is largely preserved when r500 and M500 are derived using thehydrostaticmassproxy,YX,500,albeitwithsignificantlyreducedscatter(σlog10Y ≃0.02),a result that is due to the tight correlation between Y500 and YX,500. Interestingly, this assumption also hides any bias in the relation due to dynamical activity. We also assess the importance of projection effects from large-scale structure along the line of sight, by extracting cluster Y500 values from 50 simulated 5 × 5-deg2 sky maps. Once the (model-dependent) mean signal is subtracted from the maps we find that the integrated SZ signal is unbiased with respect to the underlying clusters, although the scatter in the (cylindrical) Y500–M500 relation increases in the preheating case, where a significant amount of energy was injected into the intergalactic medium at high redshift. Finally, we study the hot gas pressure profiles to investigate the origin of the SZ signal and find that the largest contribution comes from radii close to r500 in all cases. The profiles themselves are well described by generalized Navarro, Frenk & White profiles but there is significant cluster-to-cluster scatter. In conclusion, our results support the notion that Y500 is a robust mass proxy for use in cosmological analyses with clusters

    Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels

    Get PDF
    Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K+ channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the “helix-bundle crossing”. However, in the inwardly rectifying (Kir) potassium channel family, the role of this “hinge” residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper “hinge” residues are in close contact with the base of the pore α-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the “lower” gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue
    corecore