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A B S T R A C T

Selection is a major driving force behind evolution and is a key feature of multiobjective evolutionary
algorithms. Selection aims at promoting the survival and reproduction of individuals that are most fitted to a
given environment. In the presence of multiple objectives, major challenges faced by this operator come from
the need to address both the population convergence and diversity, which are conflicting to a certain extent. This
paper proposes a new selection scheme for evolutionary multiobjective optimization. Its distinctive feature is a
similarity measure for estimating the population diversity, which is based on the angle between the objective
vectors. The smaller the angle, the more similar individuals. The concept of similarity is exploited during the
mating by defining the neighborhood and the replacement by determining the most crowded region where the
worst individual is identified. The latter is performed on the basis of a convergence measure that plays a major
role in guiding the population towards the Pareto optimal front. The proposed algorithm is intended to exploit
strengths of decomposition-based approaches in promoting diversity among the population while reducing the
user's burden of specifying weight vectors before the search. The proposed approach is validated by
computational experiments with state-of-the-art algorithms on problems with different characteristics. The
obtained results indicate a highly competitive performance of the proposed approach. Significant advantages are
revealed when dealing with problems posing substantial difficulties in keeping diversity, including many-
objective problems. The relevance of the suggested similarity and convergence measures are shown. The validity
of the approach is also demonstrated on engineering problems.

1. Introduction

Evolutionary algorithms proved effective when solving multiobjec-
tive optimization problems (MOPs) in different application domains
[1]. Similarly to single-objective counterparts, multiobjective evolu-
tionary algorithms (MOEAs) process a population of solutions in a
probabilistic manner. This allows to perform the global search with
little knowledge about the objectives and to approximate the Pareto set
efficiently in a single simulation run. In doing so, MOEAs rely on three
major mechanisms such as mating (parent) selection, variation (re-
production) and environmental selection (replacement). In turn, these
concepts draw inspiration from natural evolution. Variation aims at
exploring the search space by producing new candidate solutions. This
process makes use of stochastic operators applied to one or more
parent solutions. Overwhelmingly, existing MOEAs simply rely on
variation operators initially designed for single-objective optimization.
Variation can be adopted without any modifications and plugged into a
framework being enable to perform selection in the presence of
multiple objectives. This makes selection a key feature of MOEAs, with
its effectiveness playing a crucial role in their performance.

In nature, selection is responsible for adaptation of species to their
environment. It gives an extra survival and reproduction probability to
the most fitted individuals. In MOEAs, selection operators attempt to
mimic this process. This is conducted on the basis of some fitness
measure designed to reflect how suited individuals are in the context of
the environment defined by the problem being solved. Depending on
the fitness assignment and selection, most existing MOEAs can be
classified into three major category.

Dominance-based MOEAs rely on the concept of the Pareto
dominance to direct the search. Selection is motivated by the idea that
nondominated individuals are preferred over dominated ones. It
typically incorporates some mechanism to promote diversity. A repre-
sentative MOEA belonging to this category was proposed in [2]. It
combines convergence and diversity measures into a scalar fitness
value. The former is based on the number of individuals the dominator
of a given solution dominates, whereas the latter employs a nearest
neighbor technique. Another popular approach ranks the population
into different non-domination levels, thereby highlighting nondomi-
nated individuals [3]. A diversity preserving mechanism is applied
when the last accepted level cannot be completely accommodated.
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Dominance-based MOEAs are often used with variation relying on
genetic algorithm concepts. Though, in [4], it was demonstrated that a
dominance-based selection is also effective when extending immune
clonal algorithm to solving MOPs. The major advantage of dominance-
based selection is that it naturally reflects the concepts of optimality in
multiobjective optimization. Although such selection often works well
for two and three objectives, its performance severely deteriorates in
high-dimensional objective spaces [5]. This is caused by the fact that
almost all individuals in the population become nondominated. Thus, a
selection pressure is significantly decreased. In such circumstances,
many diversity preserving mechanisms favor solutions that are far
away from the Pareto front. And dominance-based MOEAs can per-
form even worse than random search algorithms. This issue can be
addressed by modifying the dominance relation. In [6], a method for
widening the area dominated by a given solution was suggested. In [7],
the concept of dominance was applied to the grid in the objective
spaces. Defining the grid requires setting the number of devisions for
each objective, with an inappropriate value leading to a poor perfor-
mance. On the other hand, improving a diversity preserving mechan-
ism can increase the scalability of MOEAs [8–11]. Also, the dominance
relation can provide a high selection pressure, thereby producing a
harmful impact on the search due to the loss of diversity [12]. To
improve the population diversity, one can consider the diversity of
genetic information as an objective in a nondominated sorting [13].
Overall, the search in the decision space is an important aspect of
multiobjective optimization that heavily influences both the population
convergence and diversity. This was particularly explored in [14] by
suggesting a promising framework based on decision variable analysis
that divides and process the decision variables in accordance to their
role in the given MOP.

Decomposition-based approaches attempt to decompose an original
MOP into a number of subproblems and solve them in parallel.
Different possibilities are available for this. On one hand, decomposi-
tion can be based on the aggregation of multiple objectives by means of
scalarization that involves traditional mathematical techniques [15].
This way, a scalar fitness value is assigned to each population member
reflecting its quality. Convergence is provided by minimizing a
corresponding scalarizing function, whereas diversity is ensured by a
well-distributed weight vectors. MOEA/D [16,12] is a popular frame-
work relying on this principle. When producing offspring, it explores
the neighborhood relation defined on the closeness of weight vectors.
Replacement is performed favoring better values of the scalarizaing
function. Recently, MOEA/D has been extensively investigated, leading
to numerous modifications of its framework. The impact of different
scalarizion schemes was studied in [17,18], with the results suggesting
that a proper choice of scalarizing function is important for the
performance of MOEA/D. Also, it was shown that a better exploration
of the search space can be achieved by performing replacement in the
neighborhood of the subproblem that the best matches offspring [19].
Another important issue in MOEA/D is an efficient allocation of
computational resources between different subproblems [20]. For this
purpose, the concept of successful solutions, those entering an external
archive, was introduced in [21]. For each subproblem, a number of
successful solutions is used to calculate a selection probability, thereby
allocating computational recourses to most promising subproblems. It
was demonstrated that MOEAs relying on scalarization can better
balance convergence and diversity [12]. A highly competitive perfor-
mance for problems with a large number of objectives was also shown
[22]. The major advantage of such MOEAs is efficiency, as a little
computational effort is needed to compute a scalarizing function value.

On the other hand, directional vectors can be used for defining
directions of search. This way, population members are evolved being
associated with corresponding directions. In [23], direction vectors
uniformly distributed on a hypersphere are utilized to divide the
population and assign fitness among subpopulations based on conver-
gence along these vectors. In [24], a diversity preservation mechanism

was modified to extend a nondominated sorting genetic algorithm to
many-objective optimization. Another MOEA exploiting the dominance
and decomposition-based strategies was suggested in [25]. An ap-
proach that performs selection considering the distance to the refer-
ence direction first and the distance to the reference point second was
proposed in [26]. The promising performance exhibited by such
algorithms comes with the cost of increasing the human's burden in
the form of providing a proper set of vectors before the search.
Generating such set may be not an easy task, especially for high-
dimensional spaces. Although there are some strategies allowing to
automatize this process [27], an arbitrary number of weights cannot be
obtained and the population size must be adjusted to the resultant
number. Alternatively, polar coordinates can be used to decompose the
objective space into a set of grids as suggested in [28], where
population members are evolved while maintaining them associated
with corresponding grids. A significant drawback of weight vector-
based algorithms has been pointed out in [29], showing these
algorithms are largely overspecialized for popular test suites such as
DTLZ and WFG. This is due to the consistency between the shape of the
Pareto front and the shape of the distribution of the weight vectors,
which allows doing well on these problems but not in a general case.

The working principle of indicator-based approaches is based on
optimizing quality indicators that are often utilized for the performance
assessment of MOEAs. Although there have been developed various
types of such indicators, the epsilon and hypervolume are the most
frequently used ones within MOEAs. A general framework for incor-
porating quality indicators was proposed in [30]. This approach can
use an arbitrary indicator to compare a pair of candidate solutions
instead of entire approximation sets. A scheme similar to summing up
the indicator values for each population member with respect to the
rest of population is used to assign a scalar fitness value reflecting its
quality with respect to the convergence and diversity. Indicator-based
selection is often used to refine the Pareto dominance relation [31]. In
[32], it is shown that maintaining two archives separately, one for
diversity and another for convergence with indicator-based selection,
can be beneficial. Indicator-based MOEAs are successful in dealing
with many-objective problems [33]. The difficulty in their application
arises from a high computational cost. As shown in [34], the computa-
tion time of the hypervolume grows exponentially with the number of
objectives, significantly limiting its applicability. This problem can be
mitigated by approximation. For this purpose, a method based on
Monte Carlo simulation was proposed in [35], where the hypervolume
is approximated by computing a number of dominated point in a
sample. This requires to accept some trade-off between accuracy and
complexity. Alternatively, a method based on scalarizing functions was
suggested in [36], though this necessitates a large number of weight
vectors. Another developments make use of computationally less
expensive quality indicators [37,38].

In spite of recent advances and numerous existing frameworks for
solving MOPs, it is theoretically impossible to have an optimization
approach that works the best for all the problems [39]. The only way
one approach can outperform another if it implements some char-
acteristics that are particularly suitable for dealing with a problem at
hand. This fact stresses the importance of innovative approaches and
motivates the research in the field of evolutionary multiobjective
optimization. The present study seeks to advance the state-of-the-art
by proposing a multiobjective evolutionary algorithm based on vector
angle neighborhood (MOEA/VAN). The main novelty of the proposed
framework is a selection scheme. In some sense, MOEA/VAN can be
viewed as a decomposition-based approach. As opposed to existing
MOEAs relying on decomposition, the proposed approach does not use
any kind of weight of directional vectors. This alleviates the user's
burden and the issue of consistency between the shapes of the Pareto
front and the distribution of weight vectors. An important feature of
MOEA/VAN is a similarity measure, which is defined on the basis of
the angle between population members in the objective space. The
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smaller the angle, the more similar individuals. This concept is
exploited during mating and environmental selections by determining
the neighborhood and the most crowded region in the objective space,
respectively. Diversity is ensured by forming a pool for replacement
from most similar individuals, whereas convergence is provided by
removing an individual with the worst value of a convergence measure.
Different types of such measure are considered. Also, an external
archive with nondominated solutions is maintained, with truncation
procedure being developed based on proposed mechanisms for ensur-
ing convergence and diversity. The proposed framework offers different
possibilities for further extension and improvement. This is illustrated
by a simple adaptation mechanism employed when estimating indivi-
duals similarity.

The first attempt to develop the MOEA/VAN framework was
presented in [40]. The present study conducts more thorough inves-
tigation along this direction. When compared with its predecessor, the
herein proposed approach incorporates an external archive with an
appropriate truncation procedure based on the developed concepts. A
new convergence measure is suggested to overcome some limitations
identified in the previous work. Also, an adaptation strategy is devised
to properly deal with different Pareto front geometries. Further
contribution of this study is a set of test problems with known
characteristics that can be useful for investigating the ability of
MOEAs to balance convergence and diversity.

In the view of the present work, it is worthy to mention several
studies available in the literature that employ angle information during
the search. In [41], unit vectors generated in advance are used during
the evolution to decompose the population into subpopulations accord-
ing to the closeness of individuals to these vectors. For this purpose, the
angle between the corresponding vectors in the objective space is
utilized. The selection procedure employs a nondominated sorting to
trim subpopulations if the number of available slots is exceeded.
Similar decomposition approach is used in [42] for many-objective
optimization. In this approach, subpopulations are also defined by
associating individuals to closest reference directions using angles
between reference and solution vectors. The difference lies in the
selection where for each population member a fitness value is
calculated using an angle-penalized distance measure. This measure
takes into consideration the individual's convergence that is penalized
by the angle between its objective values and the reference vector. In
[43], constraints based on angles between individuals and correspond-
ing weight vectors are introduced into MOEA/D. A new precedence
relation is established for updating subproblems. When comparing two
individuals, the one satisfying constraint is preferred. If both are
infeasible in terms of angle-based constraint, the one having a smaller
constraint violation value is favored. Otherwise, the scalarizing func-
tion values are used for decision as usual. Another variant of MOEA/D
using angle information was suggested in [44]. To improve the balance
between convergence and diversity, this approach employs decomposi-
tion-based sorting for controlling convergence and angle-based selec-
tion for maintaining diversity. The former defines different solution
sets based on scalarizing function values. The latter selects solutions
from the set, which cannot be completely accommodated into the new
population, based on angles so that the minimum angle is maximized.

The common feature of the above approaches is that vectors
defining directions of search are generated in advance and used for
associating population members with certain directions, depending on
how small is the angle between the direction and solution vectors.
Although the herein proposed approach uses angle information, the
important difference with existing approaches resides in the fact that
no direction vectors are generated before and used during the search.
To certain extent, this reduces a human labor. The proposed MOEA/
VAN is the first algorithm demonstrating that the search can be
effectively performed only exploiting the angle information between
population members without associating them with predefined direc-
tions.

The remainder of this paper is organized as follows. Section 2
presents some concepts necessary for the development of the present
work. Section 3 describes the design of the proposed framework.
Section 4 reports and discusses the results of experimental study with
state-of-the-art algorithms. This also includes the methodology em-
ployed for experimental validation. Section 5 concludes the study and
outlines some possible future work.

2. Concepts

This study considers a multiobjective optimization problem (MOP)
of the form

x x
x
f f

Ω
minimize ( ( ),…, ( ))
subject to ∈

m1

(1)

where f f f= ( ,…, )m1 is the objective vector defined in the objective
space Θ ⊆ m , x x x= ( ,…, )i n is the decision vector, Ω ⊆ n is the
feasible decision space such that

x l x u c x 0Ω = { ∈ : ≤ ≤ ∧ ( ) ≤ }n

and c c c= ( ,…, )k1 is the vector of inequality constraints, l l l= ( ,…, )n1
and u u u= ( ,…, )n1 are the lower and upper bounds of the decision
vector, respectively.

There is no natural ordering in the objective space when multiple
objectives are simultaneously considered. Instead, the objective space
is partially ordered. In such a scenario, solutions are often compared on
the basis of the Pareto dominance relation. This is also used to define
the concepts of optimality in multiobjective optimization.

For two solutions x and y from Ω, a solution x is said to dominate a
solution y (denoted by x y≺ ) if

x y
x y

i m f f
j m f f

∀ ∈ {1,…, }: ( ) ≤ ( )∧
∃ ∈ {1,…, }: ( ) < ( ).

i i

j j (2)

There is a relaxed form of the Pareto dominance relation called ϵ-
dominance. This has been widely used for the comparison of different
multiobjective algorithms.

Given two solutions x and y from Ω, a solution a is said to ϵ-
dominate a solution y (denoted by x y⪯ϵ ) if for a given ϵ

x yi m f f∀ ∈ {1,…, }: ( ) − ϵ ≤ ( ).i i (3)

A solution x Ω* ∈ is Pareto optimal if and only if

y y xΩ∄ ∈ : ≺ *. (4)

The presence of multiple conflicting objective typically gives rise to
a set of optimal solutions. This set is generally known as the Pareto
optimal set (or Pareto set for short). For a MOP (1), the Pareto set is
defined as

x y y xΩ Ω= { * ∈ ∧ ∄ ∈ : ≺ *}. (5)

For a MOP (1) and the Pareto set , the Pareto optimal front (or
Pareto front for short) is defined as

f x xΘ= { ( *) ∈ : * ∈ }. (6)

There are some special points often used in the context of multi-
objective optimization. These points define the range of the Pareto
front and are widely used in the decision making process.

An objective vector minimizing each of the objective functions is
called an ideal objective vector z ∈ mideal  . The elements of the ideal
objective vector are the lower bounds of all objectives

xi m z f∀ ∈ {1,…, }: = inf ( ).
x

i i
ideal

∈ (7)

On the contrary, the nadir objective vector znadir represents the
upper bound of each objective in the Pareto front. The elements of the
nadir objective vector correspond to the corner points of the Pareto
front
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xi m z f∀ ∈ {1,…, }: = sup ( ).
x

i i
nadir

∈ (8)

Multiobjective optimization is concerned with solving a MOP (1)
and aims at obtaining the Pareto set. Though, practically it is usually
not possible to generate the entire Pareto set due to a large or even
infinite number of points. Therefore, this is usually addressed by
approximating the Pareto set that means obtaining a set of solutions
that are as close as possible to the true Pareto set and as diverse as
possible.

3. Proposed framework

Algorithm 1. MOEA/VAN.

1: input μ, δm, δr, Tm

2: // initialization
3: A ← {}
4: initialize and evaluate P
5: // evolution
6: repeat
7: // mating selection
8: randomly select i-th population member
9: generate u ∼ (0, 1)

10: ⎧⎨⎩P
T i u δ

μ← most similar individuals to if <
{1,…, } otherwisem

m m

11: select parents from Pm

12: // variation
13: generate offspring y
14: repair y, if necessary
15: evaluate y
16: // environmental selection
17: find x so that a P s a y s x y∄ ∈ : ( , ) < ( , )
18: if CV y CV x i m f y f x( ) ≤ ( ) ∧ ∃ ∈ {1,…, }: ( ) < ( )i i then

19: P P y← ∪
20: identify replacement pool Pr

21: find two most similar individuals
22: remove one with worse convergence measure
23: end if
24: until the stopping criterion is met
25: output A

Herein proposed multiobjective evolutionary algorithm based on
vector angle neighborhood (MOEA/VAN) embraces three major steps -
namely selection, variation and replacement - reflecting a general
framework of evolutionary algorithms. MOEA/VAN is outlined in
Algorithm 1.

During the search, MOEA/VAN maintains the population P con-
sisted of μ individuals and an external archive storing nondominated
solutions that represents an approximation to the Pareto set. The
population is randomly generated in the initialization phase, also a
problem specific mechanism can be employed for this purpose. The
population is evolved in the evolutionary process consisted of selection,
variation and replacement. MOEA/VAN is a steady-state algorithm
that means a single offspring is produced in each generation. For
variation, any evolutionary operator can be adopted, depending on the
problem at hand and genetic representation. Since the way in which
selection is performed is a main novelty, in what follows respective
aspects of MOEA/VAN are discussed in more detail.

3.1. Mating selection

The aim of mating selection (lines 7–11 in Algorithm 1) is to pick
up a set of promising population members to undergo reproduction. By

means of selection, useful genetic characteristics are expected to
propagate, as individuals better fitted to the environment are more
likely to produce promising offspring. In MOEA/VAN, there are two
major steps constituting this process. The first is to identify a mating
pool, a subset of the population from which parents are selected. At
each evolutionary step, the mating pool is determined by the neighbor-
hood of a randomly selected population member with probability δm.
With probability δ(1 − )m , the entire population constitutes the mating
pool. Next, a certain number of parents necessary for producing
offspring are picked up from the mating pool. Different strategies can
be adopted for this purpose, albeit a uniform selection is used in this
study. The exploitation of neighborhood is motivated by the hope that
similar individuals will produce promising offspring. This can be
particularly relevant when handling problems with strong dependen-
cies between the variables and high dimensional spaces.

3.2. Environmental selection

Environmental selection (lines 16–23 in Algorithm 1) aims at
forming the population of the next generation by selecting the most
promising individuals. Population members that succeed to survive
during this process must ensure a good performance of the population
with respect to convergence and diversity. Once an offspring is
generated, it enters the population if the condition shown in line 18
(Algorithm 1) is fulfilled. This condition ensures offspring being far
away from the current population are immediately rejected. Thus,
offspring is accepted if its constraint violation value CV is not greater
and it has a better value of at least one objective when compared with
the most similar population member. xCV ( ) is estimated as

∑x xCV c( ) = max( ( ), 0).
j

k
j

=1 (9)

Once the population is enlarged by accepting offspring, environmental
selection is performed by forming replacement pool and removing
worst performing individual from it. Replacement pool contains
population members that will compete for survival. There are different
possibilities for the creation of this pool in the MOEA/VAN framework.
For instance, a nondominated sorting procedure can be used to identify
the last nondominated front. This approach would be in line with
dominance-based algorithms and can be used to foster the population
convergence. Though, this study adopts a simple strategy in which
replacement pool is formed by the entire population. This is particu-
larly intended to promote the population diversity. Also, a combination
of both strategies is possible.

In the replacement pool, the worst performing individual must be
identified and removed. The factors influencing the survival of in-
dividuals are their dissimilarity and the performance in terms of
convergence. First, two most similar individuals are identified. Then,
an individual having a larger constraint violation value is removed. In
the case when both individuals are feasible or their constraint violation
values are equal, the decision is made based on a convergence measure.
An individual having a worse value of the convergence measure is
removed from the population.

3.3. Archive maintenance

Algorithm 2. ArchiveMaintenance.

1: input y
2: if a A a y∄ ∈ : ≺ then
3: for a A∈ do
4: if y a≺ then
5: A A a← ⧹
6: end if
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7: end for
8: A A y← ∪
9: end if
10: if A μ| | > then
11: find two most similar individuals
12: remove one with worse convergence measure
13: end if

Each time a newly generated individual y is evaluated, it attempts
to enter into an external archive A. The outline of the archive
maintenance procedure is given in Algorithm 2. The candidate
individual is compared with each member of the archive and is rejected
if it is dominated by at least one archive member. In the case, there are
archive members that are dominated by the candidate, those are
removed from the archive, whereas the candidate is added into the
archive. If the candidate and the archive members are mutually
nondominated, then the candidate is accepted into the archive. If the
maximum capacity of the archive is reached after the inclusion of
individual, an archive truncation procedure is invoked to reduce its
size. This procedure aims at preserving most promising individuals
while identifying and removing the worst performing one. Truncation
relies on the developed similarity and convergence measures, which
play an essential role in the archive maintenance. A simple but effective
scheme proposed in this study embraces two steps (lines 11–12 in
Algorithm 2). First, a pair of individuals with the smallest similarity
measure are identified. Next, an individual performing worse with
respect to the convergence measure is removed.

3.4. Similarity and convergence measures

A thorough observation of the proposed algorithm reveals two
important features responsible for its functionality. These are similarity
and convergence measures. The former is intended to address the issue
of diversity, whereas the latter is accountable for providing a selection
pressure necessary for convergence.

To avoid a bias caused by differently scaled objectives, objective
values used for calculating both measures are normalized. The normal-
ization is performed as

f
f f

f f
=

−
−

∼
i

i i

i i

min

max min
(10)

where fi
min and fi

max are the minimum and maximum values of the i-th
objective in the current population. Eq. (10) ensures all the objective
values are in the same range, namely f ∈ [0, 1]∼ m.

MOEA/VAN makes use of the angle between population members
in the objective space to measure how similar they are. An angle-based
similarity is a popular technique to measure similarity between two
vectors in the fields of information retrieval and data mining. This is in
contrast to evolutionary multiobjective optimization where the
Euclidean distance is the most common approach, which can be
inappropriate especially in high dimensions. The similarity measure
proposed in this study is calculated as

f f
f f

s a b a b
a b

( , ) = 1 − 〈 ( ), ( )〉
∥ ( )∥∥ ( )∥

∼ ∼
∼ ∼

(11)

where 〈·,·〉 denotes the dot product and∥·∥ denotes the Euclidean norm.
The smaller the value of s a b( , ), the more similar the individuals a and
b.

This study investigates two different measures for estimating the
convergence of individuals in the population. The first is based on the
notion that the more objective space is dominated by a given individual
the better. For calculating this measure, the objective space must be
bounded by some reference point. The portion of the objective space
that is dominated by a given solution is also known as the hypervo-

lume. It can be estimated by the product of differences between the
coordinates of the reference point and the objective values of the given
individual as

∏V i r f i( ) = ( − ( )).∼

j

m

j j
=1 (12)

where rj is the j-th component of a reference point, with rj=2
j m∀ = 1,…, being considered in this work to ensure the presence of

extreme points, and f∼j is the j-th component of the normalized
objective vector of individual i. Individuals having lager values of V
are preferred.

Another convergence measure exploits the principle that indivi-
duals having smaller deviations from an ideal objective vector are
preferred. This deviation is measured by the p-norm as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑L i f i( ) = | ( )|∼

p
j

m

j
p

p

=1

1

(13)

where p ≥ 1. The lower the value of L i( )p , the better convergence. One
possible disadvantage of this measure is that the extreme solutions of
the Pareto front approximation with convex geometry can be lost. This
is because solutions located closer to the knee point will have smaller
values of this measure that those closer to the extremes.

The ideal of the developed selection is illustrated in Fig. 1, where for
two objectives the population composed of six solutions needs to be
reduced. Based on the angle-based similarity measure, two most
similar solutions a and b are identified, with the angle between them
denoted by θ. The convergence measures for solutions are given by the
volumes V(a) and V(b) dominated by a and b, respectively, and
bounded by the reference point r. Since V a V b( ) > ( ), solution a is
retained in and solution b is removed from the population.

4. Experimental validation

The proposed MOEA/VAN is validated through computational
experiments with representative state-of-the-art algorithms. This sec-
tion presents the experimental study and discusses the obtained
results. The experiments are divided into three parts according to
characteristics of considered problems. These include a set of suggested
test problems, state-of-the-art test suite and engineering problems.

4.1. Performance comparison methodology

Due to a stochastic nature, 30 independent runs of each tested
MOEA are performed on each problem. The outcome of each algorithm
is defined by a set of nondominated solutions, designated as an
approximation set [45]. Quality indicators are used to quantitatively

Fig. 1. Illustration of selection mechanism in biobjective space.

R. Denysiuk, A. Gaspar-Cunha Swarm and Evolutionary Computation 37 (2017) 45–57

49



assess the outcomes. Following suggestions in [46], the Pareto com-
pliant quality indicators are employed in this study. Specifically, the
epsilon [45] and hypervolume [47] indicators are used. The former
assesses the convergence, whereas the latter can measure both the
convergence and diversity of an approximation set.

For problems with known Pareto fronts, a reference set is con-
structed by generating 104 points along the true Pareto front.
Otherwise, the reference set is created by combining all the nondomi-
nated solutions obtained in the experiments. Before calculating the
indicator values, all the objective values are normalized using the
minimum and maximum objective values in the reference set. When
computing the hypervolume, solutions that do not dominate the nadir
point are discarded. The hypervolume is calculated with respect to the
reference point 1.1 and the normalized hypervolume values are
presented.

A statistical analysis of the results is performed to get statistically
sound conclusions. As the assumptions required for the application of
parametric tests are usually not met, a nonparametric statistical
procedure is adopted for the analysis. In particular, a pairwise
comparison of the algorithms on a specific problem is performed by
applying the Wilcoxon rank sum test [48]. The null hypothesis is that
two algorithms perform equally, with the difference in the results being
purely due to chance. The alternative hypothesis states the observed
difference is nonrandom. The hypothesis testing is performed at a
significance level of α = 0.05.

The performance score [35] is used to access an overall perfor-
mance of an algorithm. This approach attempts to rank different
algorithms on the basis of statistical tests. For a specific problem and
a set of algorithms Alg Alg,…, l1 , let δi j, be 1, if the algorithm Algj is
statistically better that Algi. Otherwise δi j, is 0. An algorithm is
considered to statistically outperform another algorithm if it yields a
better median value of the quality indicator and there is a significant
difference between the distributions of quality indicator values pro-
duced by the two algorithms. For each algorithm Algi, the performance
score is determined as

∑P Alg δ( ) = .i
j
i j

l

i j
=1
≠

,

(14)

This value reveals how many other algorithms are better than the
corresponding algorithm on the specific problem. The smaller the
index, the better the algorithm. In particular, the value of zero means
that no other algorithm produces significantly better approximation
sets in terms of a given quality indicator.

4.2. Experimental setup

The main concern of the present study is the selection in MOEAs.
Owing to this, each set of experiments is conducted adopting the
algorithms with the same variation operators and parameter settings
allowing fair comparison of the algorithms.

Experiments involve MOEAs with differential evolution and genetic

algorithm reproduction operators. In particular, a differential evolution
operator is adopted with the scale factor of F=0.5 and the crossover
probability of CR=1. The SBX crossover is used with the distribution
index of η = 20c and applied the probability of pc=1. The polynomial
mutation has the distribution index of η = 20m and the application
probability of p n= 1/m (where n is the number of decision variables).

In all experiments, the population size is fixed to μ = 100. The
algorithms are run for μ500 × and μ300 × function evaluations in
experiments reported in Sections 4.3 and 4.4–4.5, respectively. MOEA/
VAN uses Tm=20 and δ = 0.8m , the default similarity measure is as
shown in (12). The remaining parameter setting for the other algo-
rithms are as in the original papers.

4.3. Proposed problems

A set of challenging two-objective problems is constructed.
Following suggestions in [49], each problem is composed of different
functions. The problems developed in this study conform to the
following format

x
x

f α βγ
f α βγ

( ) = (1 + )
( ) = (1 + ).

1 1

2 2 (15)

The formulation of each problem requires three different functions:
α, β and γ. Each function plays a particular role in the difficulties posed
by a resultant MOP for MOEAs. The function α accounts for the shape
of the Pareto front, the function β introduces the bias into the search
space, whereas γ is the distance function whose minimization results in
a Pareto optimal solution.

Building a test instance requires the definition of each function.
Table 1 lists the definitions of six test problems suggested in this study.
For all MOPs, the decision space is x ∈ [0, 1]n. The problems are
scalable to any number of the decision variables. This study uses n=10.
A major difference of the proposed test problems with the existing ones
- for instance [12,50,51] - lies in the definition of the function β. For
the problems in Table 1, β is a concave function with a maximum lying
close to the middle of its domain. Particularly in MOP1 and MOP5, β
corresponds to the binary entropy and triangular functions, respec-
tively. In both cases, the maximum of β is achieved when x1=0.5, when
monotonically decreasing approaching extremes of its domain. This
feature is intended to introduce difficulties in obtaining intermediate
Pareto optimal solutions, as it would be easy to converge to the corner
points of the Pareto front for β = 0 while leading to a loss of diversity in
the other regions of the search space.

The performance of MOEA/VAN on these problems is tested
against GDE3 [52], IBEA [30], MOEA/D [12], Two_Arch2 [32] and
MOEA/DVA [14]. These algorithms serve as an important reference for
performance evaluation because they encompass the major strategies
for the fitness assignment and selection in MOEAs. In particular, the
first three MOEAs are well-established state-of-the-art algorithms that
represent dominance-, indicator- and decomposition-based types of
selection. Whereas Two_Arch2 can be viewed as an improvement of
indicator-based selection where two separate archives for diversity and

Table 1
Definition of test instances.

α1 α2 β γ

MOP1 x1 x π x1 − sin( )1 2 1 x x x x− log − (1 − )log (1 − )1 1 1 1 x x x∥ ∥ ∑ | − |j
n

j=2 1

MOP2 x1 x1 − 1
2 πx1 − cos(2 )1 x x x∥ ∥ ∑ | sin( ) − |j

n
j=2 1

MOP3 x1 x1 − 1 x x(1 − )1 1 x x x∥ ∥ ∑ | − |j
n

j=2 1
2

MOP4 x1 x1 − 1 e πxsin( )x1 1 x x x∥ ∥ ∑ | cos( ) − |j
n

j=2 1

MOP5 x1 x πx1 − cos(8 )1 1 ⎧⎨⎩
x x

x
if ≤ 0.5

1 − otherwise
1 1

1

x x x∥ ∥ ∑ | − |j
n

j=2 1

MOP6 x1 x e1 − x x
1 1− 1

2 x xsin( )cos( )π π
2 1 2 1 x e x∥ ∥ ∑ | − |j

n x j=2
− 1
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convergence are maintained. MOEA/DVA is an extension of MOEA/D
that includes an elaborate mechanism for analyzing and processing
decision variables to improve the algorithm's search ability. MOEA/
DVA differs from the other MOEAs used in this study in the sense that
its main focus is on the exploration of the decision space.

Table 2 presents the results obtained for problems in Table 1. These
results clearly indicate that MOEA/VAN completely outperforms the
other algorithms, except for MOEA/DVA. Both MOEA/VAN and
MOEA/DVA produce a comparable performance. The former yields
better results for three MOPs, whereas the latter works better for two
MOPs. The results for MOP4 are dependent on the quality indicator
used, though no statistical difference was detected between the
algorithms on this problem. An important observation is that MOEA/
VAN exhibits a superior performance to other MOEAs that mainly
differ by the selection mechanism. This is due to the ability of its
selection scheme to maintain diversity among the population, which is
ensured by performing a survival contest between two most similar
individuals in the replacement pool. Since this pool consists of the
entire population, the diversity is emphasized. On the contrary, a
dominance-based selection considers convergence first and diversity
second. A poor diversity maintenance capability is also exhibited by
scalarizing- and indicator-based strategies, as a better fitness is
assigned to better converged but poorly distributed individuals. A
competitive performance of MOEA/DVA is explained by an elaborate
mechanism for exploration of the decision space, which consists of
decomposing the decision variables into position an distance related
variables and learning the linkage between them. Such decomposition
allows to evolve separately different types of variables, thereby redu-
cing the complexity of MOP. Though, this can be ineffective for
problems with no clear separation between the variables and a large
number of mixed variables [14]. Conversely, MOEA/VAN uses a simple
DE operator for exploring the decision space. Thus, the obtained
results somewhat stress the importance of the selection in multi-
objective search and its influence on the overall performance of
MOEAs.

The difference in the performance of algorithms can be further
understood by considering Fig. 2. The presented plots depict approx-
imation sets of the run closest to the median value of the hypervolume
indicator obtained by four best performing algorithms. It is clear that
Two_Arch2 and MOEA/D fail to approximate the entire Pareto front
for at least one MOP. Solutions are crowded close to the corners of the
Pareto front. A slightly better distribution is observed for MOP2 and
MOP4, though it is still unsatisfactory. On the other hand, MOEA/VAN
provides adequate Pareto front approximations for all the problems.
Quite similar performance is produced by MOEA/DVA. Though, it is a
conceptually different algorithm as discussed early. A promising

performance of MOEA/VAN and MOEA/DVA is due to its selection
scheme promoting diversity in the objective spaces and an elaborate
mechanism for exploring the decision space, respectively.

A distinctive feature of MOEA/VAN is a similarity measure. It plays
an important role in mating and environmental selections during the
course of evolution. To evaluate its impact on the algorithm's search
ability, two versions of MOEA/VAN are investigated. The one uses the
angle-based similarity measure as described in Section 3. The other
relies on the Euclidean distance. Table 3 shows results in terms of
quality indicators obtained by MOEA/VAN with two different similarity
measures. From these results, it is evident that the variant using the
angles between the vectors in the objective space works much better.
Actually, it was observed that the population does not approach the
Pareto front when using Euclidean distance within the above definition
of MOEA/VAN framework. This can be also confirmed from large
values of the epsilon indicator and small hypervolume values.

Thus, the results obtained on the six proposed problem indicate the
competitiveness of the proposed framework and the relevance of using
angles between the objective vectors of population members as
similarity measure to guide the search and keep the population
diversity.

4.4. WFG problems

The competitiveness of MOEA/VAN on state-of-the-art bench-
marks is evaluated adopting the WFG test suite [51]. These problems
possess some of the pertinent problem characteristics, including
nonseparable, multimodal, deceptive problems and with different
geometry of the Pareto front. All problems are scalable to the number
of objectives and variables. The vector associated with a simple
underlying problem that defines the fitness space is derived, via a
series of transition vectors, from a vector of working parameters.
Unlike other test suites available in the literature, this allows the user
to control the number of parameters responsible for convergence and
diversity, i.e. the number of position- and distance-related parameters.
The characteristics of the WFG problems are summarized in Table 4.

In the experiments, the problems were tested with the number of
objectives m = 5, 7, 10 and the number of decision variables n k l= + ,
where l=20 is the number of distance parameters and k m= − 1 is the
number of position parameters. As experiments involve many-objective
problems, a set of recent MOEAs proved effective in dealing with high-
dimensional objective spaces is selected for comparison. These are
HypE [35], an indicator-based MOEAs using Monte Carlo sampling for
a hypervolume-based fitness assignment, MOEA/D [16], decomposi-
tion-based approach with a fitness assignment based on scalarization,
MOEA/DD [25], an algorithm that combines dominance- and decom-

Table 2
Results for proposed problems. The values refer to median and interquartile range of quality indicators. Best performance is highlighted with gray background. The symbol † indicates a
statistical difference between the respective and best performing algorithm.
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position-based strategies specifically for many-objective optimization,
and NSGA-III [24] that is an extension of a nondominated sorting
genetic algorithm to handling many-objective problems.

The results in terms of the quality indicators obtained by the five
algorithms are presented in Table 5. These results indicate a superior
performance of MOEA/VAN to HypE, MOEA/D and MOEA/DD.

Fig. 2. Approximation sets obtained by different MOEAs for proposed problems. Plots refer to the median run in terms of the hypervolume.

R. Denysiuk, A. Gaspar-Cunha Swarm and Evolutionary Computation 37 (2017) 45–57

52



NSGA-III works better with respect to the epsilon indicator on several
7-objective problems and WFG3 with 5 and 10 objectives. Though,
MOEA/VAN gives constantly better results with regard to the hyper-
volume on all the considered instances, stressing its overall competi-
tiveness.

The above observations can be further confirmed when looking at
Fig. 3. The plots clearly show the solutions obtained by MOEA/VAN are
better distributed in the objective space. A different scale of the
objectives can be regarded as a major reason causing a poor perfor-
mance of decomposition-based MOEAs. It can be seen that the
solutions obtained by MOEA/D and MOEA/DD are mostly located
near the corner point with the lowest objective values. The promising
results obtained by MOEA/VAN can be attributed to the ability of it
selection scheme to keep the population diversity and provide a
necessary selection pressure in high-dimensional objective spaces.
The former is ensured by selecting for survival tournament, at each
evolutionary step, the most similar individuals on the basis of the
introduced similarity measure. Whereas convergence is provided by
favoring the survival of an individual that is best performing with
respect to the suggested convergence measure.

In the light of the ongoing discussion, it can be easily understood
that the convergence measure is an important feature of MOEA/VAN.
It bears the primary responsibility for providing a required selection
pressure. This issue is particularly relevant in high-dimensional

objective spaces. The comparison of the similarity measures, defined
in (12) and (13), is graphically shown in Fig. 4. In the case of
minimizing the distance to the ideal point, three types of distance
measures are considered, such as Manhattan, Euclidean and
Chebyshev distances denoted as L1, L2, L∞, respectively. It can be seen
that the best performance on the majority of problems is achieved by
the convergence measure based on the dominated volume (V). Though,
there are instances where L1 works better. In particular, these are the
problems WFG1,2 and 3, regarding the hypervolume. The deterioration
on the other problems can be due to the concave geometry of the Pareto
fronts. The results with respect to the epsilon indicator indicate quite
similar performance for all the metrics on WFG3, which has linear
Pareto front geometry. Whereas, trends similar with the results in
terms of the hypervolume are observed. Thus, the obtained results
suggest that MOEA/VAN is able to produce a competitive performance
on problems with high-dimensional objective spaces and making use of
the volume-based convergence measure can be advantageous for the
search.

4.5. Engineering problems

The comparative analysis of MOEAs on artificially constructed test
problems offers certain advantages, as the properties and the Pareto
sets of these problems are typically known. Though, such problems
often do include difficulties being encountered in real-world applica-
tions. Due to this fact three engineering problems from the literature
are addressed to demonstrate a practical relevance and validity of
MOEA/VAN.

The first is car side impact problem [24]. This problem aims to
minimize the weight of a car, the pubic force experienced by a
passenger, and the average velocity of the V-Pillar responsible for
bearing the impact load. This involves constraints limiting values of
abdomen load, pubic force, velocity of V-Pillar, rib deflection, etc.
Thickness parameters of critical parts are the design variables. The
second is the design of I-beam [53]. The problem involves the
minimization of the total cross-sectional area and the deflection at
the midspan under applied external loads. The geometric parameters of
the I-beam are the four design variables. The problem is subject to
stress and geometric constraints. The third is the design of welded
beam [54]. In this problem, a beam must carry a certain load and needs
to be welded on another beam. Thickness, length of weld, width of the
beam, and thickness of the beam are the design variables. The cost of
beam fabrication and the deflection at the end are to be minimized. The
constraints are imposed on the shear stress, bending stress in the beam
and buckling load on the bar.

As MOEA/VAN can be viewed as a decomposition-based algorithm,
MOEA/D is selected as a reference algorithm for comparison. Also,
there are several similarities in the frameworks of MOEA/D and
MOEA/VAN. Whereas the major distinction is that MOEA/VAN does
not use weight vectors during the search, with the population being
process solely based on interactions between individuals in the
objective space. MOEA/D is investigated with Chebyshev (CHB),
penalty-based boundary intersection (PBI) and weighted sum
(WSUM) scalarization schemes. For constraint handling, a strategy
suggested in [55] is adopted, as it proved effective on a set of
challenging constrained problems.

The obtained results in terms of the quality indicators are presented
in Table 6. These results suggest that MOEA/VAN performs better than
MOEA/D variants, except for the car side impact problem. On this
problem, there is no statistical difference between MOEA/VAN and
MOEA/D with Chebyshev method, with both algorithms alternately
giving best median values of the two quality indicators. The Pareto
front approximations obtained by MOEA/VAN are depicted in Fig. 5.
The plots show that MOEA/VAN can provide adequate approximation
sets for these problems, also the obtained results are consistent with
those available in the literature.

Table 3
Results for proposed problems obtained by MOEA/VAN with different similarity
measures. The values refer to median and interquartile range of quality indicators. Best
performance is highlighted with gray background. The symbol † indicates a statistical
difference between the respective and best performing algorithm.

Table 4
Characteristics of the WFG problems.

Problem Separability Modality Bias Geometry

WFG1 separable uni polynomial, flat convex, mixed
WFG2 non-separable f m1: −1 uni, fm

multi

no bias convex,
disconnected

WFG3 non-separable uni no bias linear,
degenerate

WFG4 separable multi no bias concave
WFG5 separable deceptive no bias concave
WFG6 non-separable uni no bias concave
WFG7 separable uni parameter

dependent
concave

WFG8 non-separable uni parameter
dependent

concave

WFG9 non-separable multi,
deceptive

parameter
dependent

concave
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So far the MOEA/VAN framework was discussed by addressed
similarity of individuals estimated with respect to the ideal point.
Although this strategy works sufficiently well for some problems, it
turns out that certain difficulties may be encountered when dealing
with Pareto front geometries having high degrees of convexity, as
shown in Fig. 5 for two-objective problems. In such circumstances,
there may exist a bias in the distribution of solutions along the Pareto
front. Also, this can adversely influence the performance of MOEA/
VAN. In order to overcome this difficulty, the nadir point can be used
when estimating the similarity of population members. This does not
necessitate major modifications in the algorithm. After performing

normalization, all components of the objective vector are subtracted
from 1. The similarity measure for two individuals is calculated as
shown in Eq. (11). The decision on when to use either the ideal or nadir
point as a reference point is made based on the location of the current
population in the objective space. If the distance from the closest
individual to the nadir point is smaller from the closest individual to
the ideal point, the ideal point is used as a reference point. Otherwise,
the nadir point is utilized. This way, the population is expected to adapt
to the geometry of the Pareto front.

The results obtained by two versions of MOEA/VAN are presented
in Table 7. The one without adaptation always uses the ideal point

Table 5
Results for WFG problems. The values refer to median and interquartile range of quality indicators. Best performance is highlighted with gray background. The symbol † indicates a
statistical difference between the respective and best performing algorithm.
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Fig. 3. Results for 10-objective WFG5 problem shown by parallel coordinates.

Fig. 4. Performance score for MOEA/VAN with different convergence measures.

Table 6
Results for engineering problems. The values refer to median and interquartile range of quality indicators. Best performance is highlighted with gray background. The symbol † indicates
a statistical difference between the respective and best performing algorithm.
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when calculating the similarity measure. The other with adaptation
choses the reference point based on the above explained strategy. The
results indicate that adaptively selecting either the ideal or nadir
objective vector can provide better results. Also, MOEA/VAN with
adaptation becomes able to outperform all variants of MOEA/D
presented in Table 6. Thus, the obtained results suggest that the
proposed MOEA/VAN is able to effectively deal with constrained and
real-world problems, as well as the adaptation of the selection strategy
can further improve the algorithm performance.

5. Conclusions

Selection is an important feature in the design of MOEAs. Effective
mechanisms to address both convergence and diversity must be
embedded to ensure its proper functionality. Though, this might be
uneasy task. This paper presented a new selection scheme for evolu-
tionary multiobjective optimization. A distinct feature of the proposed
approach is the way in which the population diversity is ensured. A key
role plays a similarity measure that is based on angles between
population members in the objective space. Different mechanisms for
providing convergence are considered. By the working principle, the
proposed MOEA/VAN is close to the category of decomposition-based
MOEAs. Its major distinction is that no weight or directional vectors
are required, as the objective space is implicitly decomposed by the
interactions of individuals in the population.

The competitiveness of the proposed approach was evaluated by
computational experiments with state-of-the-art algorithms on pro-
blems with different characteristics. The set of biobjective problems
was suggested with the aim to assess the ability of different selection
strategies to balance the population convergence and diversity on
problems with a significant bias in the search space. The obtained
results reveal a highly competitive performance of MOEA/VAN. Its
major strength is the ability to keep the population diversity. It is also
observed that the proposed selection provides a sufficient selection
pressure and is able to effectively direct the search in high-dimensional

objective spaces. The results confirm the ability of MOEA/VAN to deal
with constrained real-world problems. When comparing with other
decomposition-based MOEAs, an attractive feature of the proposed
selection is that it does not require a set of weight vectors, thereby
reducing user's burden.

As future work, it would be interesting to investigate the MOEA/
VAN framework combined with other evolutionary search strategies.
For instance, an intrinsic capability to maintain a diverse set of
solutions may be useful for estimation of distribution algorithms,
whose extensions to multiobjective optimization are quite limited.
Also, the performance of MOEA/VAN can be further improved by
developing a more elaborate mating selection procedure that does not
only exploit the neighborhood relations but also favors fitter indivi-
duals. Further, the adaptation of control parameters is another
promising research direction.
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