197 research outputs found

    Production, preparation and characterization of microalgae-based biopolymer as a potential bioactive film

    Get PDF
    ABSTRACT: Six microalgae strains were screened according to their biomass productivity and polymer synthesis, showing biomass productivity between 0.14 and 0.68 g/(L center dot d) for a 21-day growth period. Extracellular biopolymers from the spent culture media of Nostoc sp. (No), Synechocystis sp. (Sy), and Porphyridium purpureum (Pp) was obtained, and the yields of the clean biopolymer were 323, 204, and 83 mg/L, respectively. The crude biopolymer was cleaned up using a solid-phase extraction technique. The emulsification index E-24 values for the clean biopolymer were 77.5%, 68.8%, and 73.3% at 0.323, 0.083, and 0.204 mg/mL, respectively. The clean biopolymer of the No strain showed the highest fungal growth inhibition against Fusarium verticillioides (70.2%) and Fusarium sp. (61.4%) at 2.24 mg/mL. In general, transparent and flexible biofilms were prepared using biopolymers of No and Pp. The microstructural analysis revealed the presence of pores and cracks in the biofilms, and the average roughness Ra values are 68.6 and 86.4 nm for No and Pp, respectively, and the root mean square roughness Rq values are 86.2 and 107.2 nm for No and Pp, respectively.info:eu-repo/semantics/publishedVersio

    Estrategias en la Premier League :Evidencia empirica. Econometría y decisiones tácticas en el fútbol inglés

    Get PDF
    20 páginas incluye ilustraciones y diagramasEn este trabajo se presenta evidencia empírica del impacto de variables futbolísticas sobre el desempeño de los equipos para la Premier League. Variables como posesión, faltas, porcentaje de juego por bandas y por centro entre otras, se utilizan como centro de estudio para proporcionar información estadística que permita facilitar la toma de decisiones tácticas en el fútbol inglés. Nota: Para consultar la carta de autorización de publicación de este documento por favor copie y pegue el siguiente enlace en su navegador de internet: http://intellectum.unisabana.edu.co/handle/10818/1680

    El hipotexto como posibilidad hacia el desarrollo de la competencia literaria

    Get PDF
    Este proceso de investigación giró en torno al diseño de una propuesta didáctica que promoviera el desarrollo de la competencia literaria para favorecer la producción escrita, en estudiantes de ciclo III, de los colegios Juana Escobar IED y Liceo Bachillerato Patria. Se realizó una Investigación Acción (IA) de corte etnográfico, con enfoque cualitativo y características de paradigma interpretativo, direccionándolo hacia la transformación de las prácticas cotidianas de los procesos de lectura y el uso de la escritura para resignificar la producción textual, a partir de la relación directa con el hipotexto como herramienta; conduciendo al sujeto a la creación de hipertextos propios, desarrollados a partir del intertexto literario. Al respecto, se da cuenta del taller literario y sus etapas, como estrategia didáctica para el desarrollo de este ejercicio investigativo y la materialización de los resultados del mismo, promoviendo la evaluación cualitativa como parte fundamental para la retroalimentación de cualquier proceso de formación del individuo

    Mesothelial cell differentiation into osteoblast- and adipocyte-like cells

    Get PDF
    Serosal pathologies including malignant mesothelioma (MM) can show features of osseous and/or cartilaginous differentiation although the mechanism for its formation is unknown. Mesothelial cells have the capacity to differentiate into cells with myofibroblast, smooth muscle and endothelial cell characteristics. Whether they can differentiate into other cell types is unclear. This study tests the hypothesis that mesothelial cells can differentiate into cell lineages of the embryonic mesoderm including osteoblasts and adipocytes. To examine this, a functional assay of bone formation and an adipogenic assay were performed in vitro with primary rat and human mesothelial cells maintained in osteogenic or adipogenic medium (AM) for 0–26 days. Mesothelial cells expressed increasing levels of alkaline phosphatase, an early marker of the osteoblast phenotype, and formed mineralized bone-like nodules. Mesothelial cells also accumulated lipid indicative of a mature adipocyte phenotype when cultured in AM. All cells expressed several key osteoblast and adipocyte markers, including osteoblast-specific runt-related transcription factor 2, and demonstrated changes in mRNA expression consistent with epithelial-to-mesenchymal transition. In conclusion, these studies confirm that mesothelial cells have the capacity to differentiate into osteoblast- and adipocyte-like cells, providing definitive evidence of their multipotential nature. These data strongly support mesothelial cell differentiation as the potential source of different tissue types in MM tumours and other serosal pathologies, and add support for the use of mesothelial cells in regenerative therapies

    Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis.

    Get PDF
    BACKGROUND: RPE65 is specifically expressed in the retinal pigment epithelium and is essential for the recycling of 11-cis-retinal, the chromophore of rod and cone opsins. In humans, mutations in RPE65 lead to Leber congenital amaurosis or early-onset retinal dystrophy, a severe form of retinitis pigmentosa. The proof of feasibility of gene therapy for RPE65 deficiency has already been established in a dog model of Leber congenital amaurosis, but rescue of the cone function, although crucial for human high-acuity vision, has never been strictly proven. In Rpe65 knockout mice, photoreceptors show a drastically reduced light sensitivity and are subject to degeneration, the cone photoreceptors being lost at early stages of the disease. In the present study, we address the question of whether application of a lentiviral vector expressing the Rpe65 mouse cDNA prevents cone degeneration and restores cone function in Rpe65 knockout mice. METHODS AND FINDINGS: Subretinal injection of the vector in Rpe65-deficient mice led to sustained expression of Rpe65 in the retinal pigment epithelium. Electroretinogram recordings showed that Rpe65 gene transfer restored retinal function to a near-normal pattern. We performed histological analyses using cone-specific markers and demonstrated that Rpe65 gene transfer completely prevented cone degeneration until at least four months, an age at which almost all cones have degenerated in the untreated Rpe65-deficient mouse. We established an algorithm that allows prediction of the cone-rescue area as a function of transgene expression, which should be a useful tool for future clinical trials. Finally, in mice deficient for both RPE65 and rod transducin, Rpe65 gene transfer restored cone function when applied at an early stage of the disease. CONCLUSIONS: By demonstrating that lentivirus-mediated Rpe65 gene transfer protects and restores the function of cones in the Rpe65(-/-) mouse, this study reinforces the therapeutic value of gene therapy for RPE65 deficiencies, suggests a cone-preserving treatment for the retina, and evaluates a potentially effective viral vector for this purpose

    Efficient gene targeting mediated by a lentiviral vector-associated meganuclease

    Get PDF
    Gene targeting can be achieved with lentiviral vectors delivering donor sequences along with a nuclease that creates a locus-specific double-strand break (DSB). Therapeutic applications of this system would require an appropriate control of the amount of endonuclease delivered to the target cells, and potentially toxic sustained expression must be avoided. Here, we show that the nuclease can be transferred into cells as a protein associated with a lentiviral vector particle. I-SceI, a prototypic meganuclease from yeast, was incorporated into the virions as a fusion with Vpr, an HIV accessory protein. Integration-deficient lentiviral vectors containing the donor sequences and the I-SceI fusion protein were tested in reporter cells in which targeting events were scored by the repair of a puromycin resistance gene. Molecular analysis of the targeted locus indicated a 2-fold higher frequency of the expected recombination event when the nuclease was delivered as a protein rather than encoded by a separate vector. In both systems, a proportion of clones displayed multiple integrated copies of the donor sequences, either as tandems at the targeted locus or at unrelated loci. These integration patterns were dependent upon the mode of meganuclease delivery, suggesting distinct recombination processes

    Protective Antiviral Immunity Conferred by a Nonintegrative Lentiviral Vector-Based Vaccine

    Get PDF
    Lentiviral vectors are under intense scrutiny as unique candidate viral vector vaccines against tumor and aggressive pathogens because of their ability to initiate potent and durable specific immune responses. Strategies that alleviate safety concerns will facilitate the clinical developments involving lentiviral vectors. In this respect, the development of integration deficient lentiviral vectors circumvents the safety concerns relative to insertional mutagenesis and might pave the way for clinical applications in which gene transfer is targeted to non-dividing cells. We thus evaluated the potential use of nonintegrative lentiviral vectors as vaccination tools since the main targeted cell in vaccination procedures is the non-dividing dendritic cell (DC). In this study, we demonstrated that a single administration of nonintegrative vectors encoding a secreted form of the envelope of a virulent strain of West Nile Virus (WNV) induces a robust B cell response. Remarkably, nonintegrative lentiviral vectors fully protected mice from a challenge with a lethal dose of WNV and a single immunization was sufficient to induce early and long-lasting protective immunity. Thus, nonintegrative lentiviral vectors might represent a safe and efficacious vaccination platform for the development of prophylactic vaccines against infectious agents

    Therapeutic prospects of extracellular vesicles in cancer treatment

    Get PDF
    Extracellular vesicles (EVs) are released by all cells within the tumor microenvironment, such as endothelial cells, tumor-associated fibroblasts, pericytes and immune system cells. The EVs carry the cargo of parental cells formed of proteins and nucleic acids, which can convey cell-to-cell communication influencing the maintenance and spread of the malignant neoplasm, for example promoting angiogenesis, tumor cell invasion and immune escape. However, EVs can also suppress tumor progression, either by the direct influence of the protein and nucleic acid cargo of the EVs or via antigen presentation to immune cells as tumor derived EVs carry on their surface some of the same antigens as the donor cells. Moreover, dendritic cell-derived EVs carry MHC class I and class II/peptide complexes and are able to prime other immune system cell types and activate an anti-tumor immune response. Given the relative longevity of vesicles within the circulation and their ability to cross blood-brain barriers, modification of these unique organelles offers the potential to create new biological-tools for cancer therapy. This review examines how modification of the EV cargo has the potential to target specific tumor mechanisms responsible for tumor formation and progression to develop new therapeutic strategies and to increase the efficacy of antitumor therapies

    Noninvasive positive pressure ventilation for acute respiratory failure in children: a concise review

    Get PDF
    Noninvasive positive pressure ventilation (NPPV) refers to the delivery of mechanical respiratory support without the use of endotracheal intubation (ETI). The present review focused on the effectiveness of NPPV in children > 1 month of age with acute respiratory failure (ARF) due to different conditions. ARF is the most common cause of cardiac arrest in children. Therefore, prompt recognition and treatment of pediatric patients with pending respiratory failure can be lifesaving. Mechanical respiratory support is a critical intervention in many cases of ARF. In recent years, NPPV has been proposed as a valuable alternative to invasive mechanical ventilation (IMV) in this acute setting. Recent physiological studies have demonstrated beneficial effects of NPPV in children with ARF. Several pediatric clinical studies, the majority of which were noncontrolled or case series and of small size, have suggested the effectiveness of NPPV in the treatment of ARF due to acute airway (upper or lower) obstruction or certain primary parenchymal lung disease, and in specific circumstances, such as postoperative or postextubation ARF, immunocompromised patients with ARF, or as a means to facilitate extubation. NPPV was well tolerated with rare major complications and was associated with improved gas exchange, decreased work of breathing, and ETI avoidance in 22-100% of patients. High FiO2 needs or high PaCO2 level on admission or within the first hours after starting NPPV appeared to be the best independent predictive factors for the NPPV failure in children with ARF. However, many important issues, such as the identification of the patient, the right time for NPPV application, and the appropriate setting, are still lacking. Further randomized, controlled trials that address these issues in children with ARF are recommended

    The N-terminal domains of TRF1 and TRF2 regulate their ability to condense telomeric DNA

    Get PDF
    TRF1 and TRF2 are key proteins in human telomeres, which, despite their similarities, have different behaviors upon DNA binding. Previous work has shown that unlike TRF1, TRF2 condenses telomeric, thus creating consequential negative torsion on the adjacent DNA, a property that is thought to lead to the stimulation of single-strand invasion and was proposed to favor telomeric DNA looping. In this report, we show that these activities, originating from the central TRFH domain of TRF2, are also displayed by the TRFH domain of TRF1 but are repressed in the full-length protein by the presence of an acidic domain at the N-terminus. Strikingly, a similar repression is observed on TRF2 through the binding of a TERRA-like RNA molecule to the N-terminus of TRF2. Phylogenetic and biochemical studies suggest that the N-terminal domains of TRF proteins originate from a gradual extension of the coding sequences of a duplicated ancestral gene with a consequential progressive alteration of the biochemical properties of these proteins. Overall, these data suggest that the N-termini of TRF1 and TRF2 have evolved to finely regulate their ability to condense DNA
    corecore