264 research outputs found

    What\u27s new in online news?

    Get PDF
    This paper examines aspects of the field of Information Systems (IS) concerned with its diversity and with the rapid changes within the discipline that have been incurred by the continued evolution of the IS artefact. This examination is done in order to establish the suitability of the Cynefin framework, developed for knowledge management, as a suitable tool for sense-making in IS. A description and assessment of the Cynefin framework is provided with its varied applications in both organisational practice and research. The paper then applies the framework to make sense of some historical trends and contemporary issues of IS emphasising their diversity and changing nature. We conclude with speculation on how this approach may help guide future sense-making in IS research

    NFATc1 supports imiquimod-induced skin inflammation by suppressing IL-10 synthesis in B cells

    Get PDF
    Epicutaneous application of Aldara cream containing the TLR7 agonist imiquimod (IMQ) to mice induces skin inflammation that exhibits many aspects of psoriasis, an inflammatory human skin disease. Here we show that mice depleted of B cells or bearing interleukin (IL)-10-deficient B cells show a fulminant inflammation upon IMQ exposure, whereas ablation of NFATc1 in B cells results in a suppression of Aldara-induced inflammation. In vitro, IMQ induces the proliferation and IL-10 expression by B cells that is blocked by BCR signals inducing NFATc1. By binding to HDAC1, a transcriptional repressor, and to an intronic site of the Il10 gene, NFATc1 suppresses IL-10 expression that dampens the production of tumour necrosis factor-Ξ± and IL-17 by T cells. These data indicate a close link between NFATc1 and IL-10 expression in B cells and suggest NFATc1 and, in particular, its inducible short isoform, NFATc1/Ξ±A, as a potential target to treat human psoriasis

    Proteasome Inhibitor Bortezomib Ameliorates Intestinal Injury in Mice

    Get PDF
    Background: Bortezomib is a proteasome inhibitor that has shown impressive efficacy in the treatment of multiple myeloma. In mice, the addition of dextran sulfate sodium (DSS) to drinking water leads to acute colitis that can serve as an experimental animal model for human ulcerative colitis. Methodology/Principal Findings: Bortezomib treatment was shown to potently inhibit murine DSS-induced colitis. The attenuation of DSS-induced colitis was associated with decreased inflammatory cell infiltration in the colon. Specifically, bortezomib-treated mice showed significantly decreased numbers of CD4 + and CD8 + T cells in the colon and mesenteric lymph nodes. Bortezomib treatment significantly diminished interferon (IFN)-c expression in the colon and mesenteric lymph nodes. Furthermore, cytoplasmic IFN-c production by CD4 + and CD8 + T cells in mesenteric lymph nodes was substantially decreased by bortezomib treatment. Notably, bortezomib enhanced T cell apoptosis by inhibiting nuclear factor-kB activation during DSS-induced colitis. Conclusions/Significance: Bortezomib treatment is likely to induce T cell death, thereby suppressing DSS-induced colitis by reducing IFN-c production

    Amplified B Lymphocyte CD40 Signaling Drives Regulatory B10 Cell Expansion in Mice

    Get PDF
    Aberrant CD40 ligand (CD154) expression occurs on both T cells and B cells in human lupus patients, which is suggested to enhance B cell CD40 signaling and play a role in disease pathogenesis. Transgenic mice expressing CD154 by their B cells (CD154(TG)) have an expanded spleen B cell pool and produce autoantibodies (autoAbs). CD22 deficient (CD22(-/-)) mice also produce autoAbs, and importantly, their B cells are hyper-proliferative following CD40 stimulation ex vivo. Combining these 2 genetic alterations in CD154(TG)CD22(-/-) mice was thereby predicted to intensify CD40 signaling and autoimmune disease due to autoreactive B cell expansion and/or activation.CD154(TG)CD22(-/-) mice were assessed for their humoral immune responses and for changes in their endogenous lymphocyte subsets. Remarkably, CD154(TG)CD22(-/-) mice were not autoimmune, but instead generated minimal IgG responses against both self and foreign antigens. This paucity in IgG isotype switching occurred despite an expanded spleen B cell pool, higher serum IgM levels, and augmented ex vivo B cell proliferation. Impaired IgG responses in CD154(TG)CD22(-/-) mice were explained by a 16-fold expansion of functional, mature IL-10-competent regulatory spleen B cells (B10 cells: 26.7Γ—10(6)Β±6 in CD154(TG)CD22(-/-) mice; 1.7Γ—10(6)Β±0.4 in wild type mice, p<0.01), and an 11-fold expansion of B10 cells combined with their ex vivo-matured progenitors (B10+B10pro cells: 66Γ—10(6)Β±3 in CD154(TG)CD22(-/-) mice; 6.1Γ—10(6)Β±2 in wild type mice, p<0.01) that represented 39% of all spleen B cells.These results demonstrate for the first time that the IL-10-producing B10 B cell subset has the capacity to suppress IgG humoral immune responses against both foreign and self antigens. Thereby, therapeutic agents that drive regulatory B10 cell expansion in vivo may inhibit pathogenic IgG autoAb production in humans

    Dendritic cells license regulatory B cells to produce IL-10 and mediate suppression of antigen-specific CD8 T cells

    Get PDF
    Regulatory B cells (Bregs) suppress and reduce autoimmune pathology. However, given the variety of Breg subsets, the role of Bregs in the pathogenesis of type 1 diabetes is still unclear. Here, we dissect this fundamental mechanism. We show that natural protection from type 1 diabetes in nonobese diabetic (NOD) mice is associated with increased numbers of IL-10-producing B cells, while development of type 1 diabetes in NOD mice occurs in animals with compromised IL-10 production by B cells. However, B cells from diabetic mice regain IL-10 function if activated by the innate immune receptor TLR4 and can suppress insulin-specific CD8 T cells in a dendritic cell (DC)-dependent, IL-10-mediated fashion. Suppression of CD8 T cells is reliant on B-cell contact with DCs. This cell contact results in deactivation of DCs, inducing a tolerogenic state, which in turn can regulate pathogenic CD8 T cells. Our findings emphasize the importance of DC–Breg interactions during the development of type 1 diabetes

    Distinct in vitro binding properties of the anti-CD20 small modular immunopharmaceutical 2LM20-4 result in profound and sustained in vivo potency in cynomolgus monkeys

    Get PDF
    Objectives. To characterize the in vitro binding and effector function properties of CD20-directed small modular immunopharmaceutical (SMIP) 2LM20-4, and to compare its in vivo B-cell depletion activity with the mutated 2LM20-4 P331S [no in vitro complement-dependent cytotoxicity (CDC)] and rituximab in cynomolgus monkeys

    Serum biomarkers in Acute Respiratory Distress Syndrome an ailing prognosticator

    Get PDF
    The use of biomarkers in medicine lies in their ability to detect disease and support diagnostic and therapeutic decisions. New research and novel understanding of the molecular basis of the disease reveals an abundance of exciting new biomarkers who present a promise for use in the everyday clinical practice. The past fifteen years have seen the emergence of numerous clinical applications of several new molecules as biologic markers in the research field relevant to acute respiratory distress syndrome (translational research). The scope of this review is to summarize the current state of knowledge about serum biomarkers in acute lung injury and acute respiratory distress syndrome and their potential value as prognostic tools and present some of the future perspectives and challenges

    Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis

    Get PDF
    CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice) indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II) immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA). We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1Ξ² and IL-6 expression, by the lack of induction of IFNΞ³ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT) cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses

    Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond.

    Get PDF
    International audienceABSTRACT: The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcΞ³RIIb, and the function of CD40+ antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology
    • …
    corecore