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Abstract

MIP-1a, TGF-B, IFN-y and IL-4.

a crucial role in the development of tumor immunity.

Background: Regulatory T cells (Tregs) and B cells (Bregs) play an important role in the development of lung
cancer. The present study aimed to investigate the phenotype of circulating Tregs and Bregs in patients with lung
cancer and explore potential mechanism by which lung cancer cells act on the development of both.

Methods: Patients with lung cancer (n = 268) and healthy donors (n = 65) were enrolled in the study. Frequencies
of Tregs and Bregs were measured by flow cytometry with antibodies against CD4, CD25, CD127, CD45RA, CD19,
CD24, CD27 and IL-10 before and after co-cultures. gRT-PCR was performed to evaluate the mRNA levels of RANTES,

Results: We found a lower frequency of Tregs and a higher frequency of Bregs in patients with lung cancer
compared to healthy donors. Co-culture of lung cancer cells with peripheral blood mononuclear cells could polarize
the lymphocyte phenotype in the similar pattern. Lipopolysaccharide (LPS)-stimulated lung cancer cells significantly
modulated regulatory cell number and function in an in vitro model.

Conclusion: We provide initial evidence that frequencies of peripheral Tregs decreased or Bregs increased in
patients with lung cancer, which may be modulated directly by lung cancer cells. It seems cancer cells per se plays
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Introduction
Lung cancer is the most prevalent malignant tumor and
the leading cause of cancer-associated morbidity and mor-
tality [1]. Over 1.4 million people were diagnosed with
lung cancer in 2004 and about 1.3 million people die of
lung cancer each year, according to the Global Burden of
Disease study [2]. Both tumor characteristics immune re-
sponses of patients with lung cancer could affect tumor
development [3]. Growing evidence has proposed an op-
posing role of the immune system in fostering tumor
growth, in spite of the considerable evidence indicating
that the immune system can recognize and destroy tumor
cells [4-6].

Regulatory T cells (Tregs) are a subpopulation of T cells
with immune suppressive function. Recent studies dem-
onstrated elevated percentages of Tregs in the total T cell
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population isolated from tumor tissues or peripheral
blood in a variety of cancers, including lung cancer [7-9].
The accumulation of Tregs might be associated with
advanced tumor growth and poor prognosis in lung
cancer [10-12]. Regulatory B cells (Bregs) were also
found to play a regulatory role in immune responses
via the production of regulatory cytokines, such as IL-
10 and TGEF-B, and express inhibitory molecules to sup-
press pathogenic T cells and autoreactive B cells in a
cell-to-cell contact-dependent manner [13,14]. The ab-
sence or loss of Bregs may exacerbate disease symptoms
in autoimmune diseases [15], chronic inflammatory dis-
eases [16], or promot tumor progression. It was reported
that Bregs played a critical role in pulmonary metastasis of
breast cancer through inducing recruitment and expan-
sion of Tregs [17]. In developing tumors anti-tumorigenic
and pro-tumorigenic immune and inflammatory mecha-
nisms coexist, and the net effect of them affects tumor de-
velopment [18].
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However, there are few studies on the role of Bregs in
lung cancer and the potential interaction of lung cancer
cells on the development of Treg and Breg. The present
study aimed to investigate the phenotype of circulating
Tregs and Bregs in patients with lung cancer and explore
potential mechanism by which lung cancer cells act on
the antitumor immunity.

Patients and methods

Blood samples collection

Peripheral blood samples were collected upon patient
admission before any therapeutic intervention. The diag-
nosis of lung cancer was made on the basis of imaging
or biopsy examination (n=268). Control samples were
obtained from healthy donors (n = 65). All blood samples
were collected after informed consent was given. The
present study was approved by the Ethical Evaluation
Committee of Zhongshan Hospital.

Cell isolation and culture

Peripheral blood mononuclear cells (PBMC) were iso-
lated as previously described [19]. In brief, whole blood
samples were overlaid onto Ficoll separation media
(Tianjin Haoyang Biological Manufacture, China) after 1:1
dilution with Hank’s Balanced Salted Solution (Gibco, CA,
USA). PBMCs were centrifuged for 15 min at x 2800 rpm,
collected at the plasma interface and washed thrice after
centrifugation at x 1500 rpm for 10 min. Human alveolar
adenocarcinoma cell line A549, which were from our re-
search center, and the isolated PBMCs were cultured in
DMEM (high glucose, Hyclone, USA), supplemented with
10% EBS (Hyclone, USA), 100U/ml penicillin, and 100 pg/
ml streptomycin at 37°C in a 5% CO,, 95% air environ-
ment in humidified incubators.

Transwell experiment

Twelve-well transwell chambers with a 0.4 pm porous
membrane (Corning-Costar, USA) were used. A549
cells (5 x 10°/well) were plated underneath the trans-
well chamber and stimulated with LPS, and then 0.5 ml of
PBMC (2 x 10°/ml) was added to the inner chamber at
24 hrs after LPS stimulation. After co-culturing for 48 hrs,
PBMCs were harvested and stained by flow cytometry,
while A549 cells were harvested and prepared for quanti-
tative real time polymerase chain reaction (QRT-PCR). To
investigate the role of LPS-related signal pathway, A549
cells were pretreated with NF-«B inhibitor PDTC at 10,
50, 100, 300, or 500 M for 4 hrs.

Flow cytometry analysis

Flow cytometry analysis was conducted by FACS Aria II
flow cytometry (BD Bioscience, USA). For surface stain-
ing, suspensions of PBMCs were stained on ice using
predetermined optimal concentrations of each antibody
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for 30 min, and fixed using fixation buffer (BD PharMingen,
USA). Tregs identified with CD4"CD25"CD127" expres-
sion were stained with human regulatory T cell Cocktail
(BD PharMingen, USA) [20] and Bregs identified with
CD19"CD24MCD27" expression were stained with hu-
man anti-CD19, human anti-CD24, and human anti-
CD27 (BD PharMingen, USA) [21]. Intracellular IL-10
analysis was performed by flow cytometry, as described
previously [22]. Briefly, cells were resuspended (2 x 10°
cells/ml) in medium and stimulated with ODN2006
(10 pg/ml; Sangon Biotech, Shanghai, China) for 24 hrs
with leukocyte activation cocktail (2 pl/ml; BD GolgiPlug™,
BD Pharmingen, USA) added during the final 5 hrs before
staining. After surface staining, cells were fixed, perme-
abilized using a Cytofix/Cytoperm™ Kit (BD PharMingen,
USA), and stained with human anti-IL10 (BD PharMingen,
USA) according to the manufacturer’s instructions. Results
are expressed as frequency of Tregs or Bregs.

Quantitative real time polymerase chain reaction (QRT-PCR)
RNA extraction was performed using the TRIZOL™LS
reagent (Invitrogen, Carlsbad, CA). cDNA was prepared
using PrimeScript® RT reagent Kit (Takara, Shiga, Japan)
following standard protocols. qRT-PCR was performed
using SYBR® Premix Ex Taq™ (Takara, Shiga, Japan) on
the ABI PRISM 7900 real-time PCR system (Applied
Biosystems, Foster City, CA). All samples were run in
triplicate. Results are shown as relative target mRNA
levels.

Experimental design

1. To evaluate the frequency of peripheral Tregs and
Bregs in patients with lung cancer, 268 patients were
recruited from 800 patients with lung cancer under
the restricted criteria.

2. To investigate the role of inflammation in shaping
the phenotype of PBMC. To reveal the role that
cell-cell-contact or cytokines play in phenotype
alterations, A549 cells were stimulated with LPS at
10, 100, 1000 ng/ml or vehicle for 24 hrs, and
LPS-stimulated A549 cells as activated LC cells and
their supernatant as activated medium were then
harvested. PBMCs from healthy donors were
co-cultured with the harvested activated or
non-activated A549 cells and medium for 48 hrs,
respectively. The control group was PBMC from
healthy donors without co-culture. Treg and Breg
frequencies were enumerated by flow cytometry
(Additional file 1: Figure S1A).

3. To reveal indirect effects of activated lung cancer
cells on PBMC phenotypes and to investigate
whether continuous stimulation by LPS will bears
different effects on PBMC phenotype, A549 cells
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were planted in the lower chamber of the transwell
and stimulated with LPS at 100 and 500 ng/ml or
vehicle for 24 hrs. PBMCs from healthy donors were
then added to the upper chamber of the transwell
for co-culture for 48 hrs. The control group was
PBMC from healthy donors without co-culture. Treg
and Breg frequencies were enumerated by flow
cytometry. The co-cultured A549 cells were also
harvested for qPCR for mRNA expression of
RANTES and MIP-1q, while the co-cultured PBMCs
were harvested for mRNA expression of TGF-J3,
IFN-y, and IL-4. The control group was A549 cell or
PBMC from healthy donors without co-culture
(Additional file 1: Figure S1B).

4. To investigate the role of LPS-related NF-«B signal
pathway in the activation of lung cancer cells. A549
cells were planted in the lower chamber of the
transwell and pretreated with NF-«B inhibitor PDTC
at 10, 50, 100, 300, 500 pM or vehicle for 4 hrs, and
then washed with fresh medium. After then, PDTC
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pre-treated A549 cells were stimulated with LPS at
500 ng/ml for 24 hrs and PBMCs from healthy
donors were added to the upper chamber of the
transwell for co-culture for 48 hrs. Treg frequencies
were enumerated by flow cytometry (Additional

file 1: Figure S1C).

. To investigate the role of inflammation-activated

lung cancer cells in phenotype alterations of PBMC
obtained from patients with lung cancer and the
phenotype difference between lung cancer patients
and healthy individuals. A549 cells were stimulated
with LPS at 100 and 500 ng/ml for 24 hrs, and
LPS-stimulated A549 cells and their supernatant
were then harvested. PBMC from lung cancer
patients were co-cultured with harvested LPS-
stimulated A549 cells and their supernatant for

48 hrs, respectively. The control group was PBMC
from lung cancer patients without co-culture. Treg
and Breg frequencies were enumerated by flow
cytometry (Additional file 1: Figure S1D).
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Figure 1 Alteration of peripheral frequencies of regulatory lymphocytes in patients with lung cancer. A: peripheral frequency of CD4" T
cells in total peripheral blood mononuclear cells (PBMCs), B: peripheral frequency of CD19* B cells in total PBMCs, C: peripheral frequency of
Tregs in CD4" T cells, D: peripheral frequency of CD45RA' Tregs in CD4™ T cells, E: peripheral frequency of CD197CD24"CD27" B cells in CD19" B
cells, and F: peripheral frequency of CD19"IL-10" B cells in CD19" B cells. * and *** stand for p value less than 0.05 and 0.001, as compared to
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Statistical analysis

All values were expressed as mean + SEM. Statistical
analysis was performed using SPSS software (SPSS
20.0; SPSS Inc; Chicago, IL). Frequencies of peripheral
Tregs and Bregs among groups were analyzed with
one-way ANOVA, followed by an unpaired student’s ¢-
test. P <0.05 was considered as statistically significant.

Results

Frequencis of CD4'T cells and CD19"B cells in
PBMCs from patients with lung cancer significantly
decreased as compared with healthy individuals
(P <0.001, Figure 1A and B, respectively). The fre-
quency of peripheral Tregs (CD4"CD25'CD1277) in
CD4"'T cells and frequency of naive Tregs (CD45RA"
CD4"CD25%CD1277) in CD4'T cells from lung cancer
patients was significantly lower than in the healthy
(P <0.05; Figure 1C and D, respectively). The frequency
of peripheral Bregs (CD19*CD24™CD27*) and CD19*
IL-10"B cells in CD19'B cells in lung cancer patients
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were significantly higher than in the healthy, as shown
on Figure 1E and F (P <0.001 and 0.05, respectively).

The frequency of CD4"T cells significantly increased
(P <0.05; Figure 2A), while the frequency of CD19'B
cells, Tregs and CD45RA"Tregs decreased after co-
culture with A549 cells (Figure 2B,C and D, respectively).
As shown in Figure 2E, the background frequency of
CD19*CD24"CD27*B cells was below the threshold for
quantification by flow cytometry analysis. The fre-
quency of B cells spontaneously expressing IL-10 was
only 0.01% (Figure 2F). After co-culture with A549 cells,
the proportion of CD19*CD24"CD27" and CD19'IL-10*
B cells elevated above background (Figure 2E and F,
respectively).

The frequency of CD4'T cells significantly increased
after co-culture either with LPS-stimulated A549 cells
or the conditioned supernatant (Figure 3A). The
frequency of CD19'B cells increased in a LPS-
concentration-dependent manner (Figure 3B). The fre-
quencies of Tregs or CD45RA"Tregs reached to the
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Figure 2 Direct effects of lung cancer cells on peripheral blood mononuclear cells (PBMCs) measured during the co-culture of PBMCs
from healthy donors with lung cancer cells (A549). A: Frequency of CD4™ T cells in total PBMCs, B: Frequency of CD19" B cells in total PBMCs,
C: Frequency of Tregs in CD4" T cells, D: Frequency of CD45RA*Tregs in CD4" T cells, E: Frequency of CD197CD24"CD27" B cells in CD19* B
cells, and F: Frequency of CD19¥IL-10" B cells in CD19" B cells. *, **, and *** stand for p value less than 0.05, 0.01, and 0.001, as compared to
PBMCs alone, respectively.
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AS549 cells as activated LC cells and their supernatant as activated medium were harvested. After then, PBMCs from healthy donors were co-cultured with
the harvested activated or non-activated A549 cells and medium for 48 hrs, respectively. The control group was PBMC from healthy donors
without co-culture. A: Frequency of CD4" T cells in total PBMCs, B: Frequency of CD19" B cells in total PBMCs, C: Frequency of Tregs in CD4"
T cells, D: Frequency of CD45RA™Tregs in CD4™ T cells, E: Frequency of CD197CD24"CD27* B cells in CD19" B cells, and F: Frequency of CD1971L-10" B cells
in CD19" B cells. +, ++, and +++ stand for p values less than 0.05, 001, and 0.001, as compared with corresponding controls including vehicle-stimulated
PBMC, PBMC co-culture with vehicle-stimulated A549 supernatant, or PBMC co-culture with vehicle-stimulated A549 cells, respectively. *, **, and *** stand

for p values less than 0.05, 0.01, and 0.001, as compared with corresponding LPS-stimulated PBMC, respectively.

J

highest level when LPS concentration was 100 ng/ml
(Figure 3C and D). The alterations of frequencies of
CD45RA " Tregs were similar to those of Tregs. LPS-
stimulation-conditioned supernatant had more effect
on the CD45RA " Tregs phenotype than LPS-stimulated
A549 cells per se. Frequencies of CD19"CD24MCD27
"B cells were significantly lower after co-culture with
conditioned supernatant, as compared with the control
group (Figure 3E). The frequency of CD19°IL-10"B
cells reached to the highest level when co-culture with

the conditioned supernatant when LPS concentration
was 1000 ng/ml (Figure 3F). Co-culture with LPS-
stimulated A549 cells significantly increases the propor-
tion of CD19*CD24MCD27* and CD19*IL-10* B cells
under all concentrations of LPS (Figure 3E and F,
respectively).

Study on the co-culture of A549 cells with PBMCs in
the presence of continuous stimulation with LPS demon-
strated LPS stimulation significantly decreased frequencies
of CD4'T cells (Figure 4A), while increased frequencies of
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Figure 4 Indirect effects of lung cancer cells on peripheral blood mononuclear cells (PBMCs) measured during the co-culture of lung
cancer cells (A549) with PBMCs from healthy donors in a transwell model. A549 cells were planted in the lower chamber of the transwell
and stimulated with LPS at 100 and 500 ng/ml or vehicle for 24 hrs. PBMCs from healthy donors were then added to the upper chamber of the
transwell for co-culture for 48 hrs. A: frequency of CD4" T cells in total PBMCs, B: frequency of CD19" B cells in total PBMCs, C: frequency of Tregs
in CD4™ T cells, D: frequency of CD45RA™Tregs in CD4™ T cells, E: frequency of CD197CD24hiCD27" B cells in CD19™ B cells; (F) Frequency of
CD19"IL-10" B cells in CD19* B cells. * stand for p values less than 0.05, as compared with the control group with PBMC from healthy donors

Stimulation with LPS

CD19"B cells at 500 ng/ml of LPS (Figure 4B). Figure 4C
showed significantly increased frequencies of Tregs in a
concentration-dependent pattern, while a decreased fre-
quency of CD45RA " Tregs at 100 ng/ml of LPS. The fre-
quency significantly increased to the highest level at
500 ng/ml of LPS (P <0.05; Figure 4D). A concentration-
dependent increase in frequencies of CD19*CD24™CD27*
and CD19'IL-10" B cells was noted in CD19'B cells
(Figure 4E and F, respectively).

To investigate the role of LPS-related signal pathway
in the interaction between cancer cells and immune
cells, A549 cells were pretreated with or without the
NF-«B inhibitor PDTC at 10, 50, 100, 300, or 500 uM
for 4 hrs, followed by the stimulation of LPS at 500 ng/
ml. Figure 5A demonstrated that PDTC-pretreated A549
cells significantly increased frequencies of CD4"T cells,

while decreased frequencies of Tregs and CD45RA
"Tregs when A549 cells were pretreated with PDTC at
300 uM (Figure 5B and C). Figure 6A and B showed a
significantly increased mRNA expression of RANTES
and MIP-la in A549 in a concentration-dependent
pattern after co-culture, which accompanied the up-
regulation of Tregs (Figure 4C). mRNA expression of
TGE-B in PBMC significantly reduced (Figure 6C), but
IEN-y and IL-4 in PBMC increased after co-culture
(Figure 6D and E).

Co-culture of PBMCs from lung cancer patients with
A549 cells and conditioned supernatant stimulated with
LPS at 100 and 500 ng/ml induced alterations in PBMC
populations compared to those observed in PBMCs
from healthy donors. Figure 7A demonstrated that co-
culture with LPS-stimulated A549 cells or conditioned
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Figure 5 The role of LPS-related NF-kB signal pathway in the activation of lung cancer cells (A549). A549 cells were planted in the lower
chamber of the transwell and pretreated with NF-kB inhibitor PDTC at 10, 50, 100, 300, 500 uM or vehicle for 4 hrs, and then washed with fresh
medium. PDTC pre-treated A549 cells were stimulated with LPS at 500 ng/ml for 24 hrs and PBMCs from healthy donors were then added to the
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C: frequency of CD45RATregs in CD4" T cells. *, **, and *** stand for p values less than 0.05, 0.01, and 0.001, as compared with controls
pretreated with vehicle, respectively.

supernatant did not alter frequencies of CD4'T cells, decreased in conditioned supernatant stimulated with
but increased frequencies of CD19"B cells after the co- LPS at 100 or 500 ng/ml, respectively, after the co-
culture (Figure 7B). Frequencies of Tregs increased or culture. Frequencies of Tregs significantly decreased
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after co-culture with LPS-stimulated A549 cells in a
concentration-dependent pattern (Figure 7C). Alterations
in the proportion of CD45RA " Tregs were similar to that
of Tregs, as shown in Figure 7D. Alterations of Tregs fre-
quencies in PBMCs from lung cancer patients were mainly
cell-cell-contact dependent, while alterations of CD45RA™
Tregs were predominantly cytokine-dependent. LPS
stimulation also increased the expression of cytoplasmic
IL-10 in CD19'B cells. Frequencies of CD19*CD24"
CD27" and CD19'IL-10" B cells significantly decreased
after co-culture either with LPS-stimulated A549 cells or
conditioned supernatant, as compared with the control
(Figure 7E and F). It seemed that alterations of Bregs were
mainly cytokines dependent.

Discussion

The immune system plays a significant role in the control
of tumor progression, although the regulatory mechanism
of interaction between two systems remains unclear. High
proportions of Tregs were found in tumor-infiltrating
lymphocytes of patients with lung cancer [7] and Tregs
from patients with lung cancer directly inhibited autolo-
gous T cell proliferation [23]. The percentage of Tregs
might be correlated with the pathological stage in lung
cancer or tumor burden [24]. The present study dem-
onstrated that peripheral frequencies of Tregs and
CD45RA"Tregs in lung cancer patients was lower than
those in healthy individuals, indicating a maturation-
activation state of naive Tregs and preferential homing
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were stimulated with LPS at 100 and 500 ng/ml for 24 hrs, and LPS-stimulated A549 cells and their supernatant were then harvested. PBMC from
lung cancer patients were co-cultured with harvested LPS-stimulated A549 cells and their supernatant for 48 hrs, respectively. The control group
was PBMC from lung cancer patients without co-culture. A: frequency of CD4™ T cells in total PBMCs, B: frequency of CD19" B cells in total PBMCs,
C: frequency of Tregs in CD4* T cells, D: frequency of CD45RA*Tregs in CD4™ T cells, E: frequency of CD19*CD24"CD27* B cells in CD19* B cells,
and F: frequency of CD19*IL-10" B cells in CD19" B cells. + stands for p value less than 0.05, as compared with PBMC co-culture with vehicle-
stimulated A549 cells. *, **, and *** stand for 0.05, 0.01, and 0.001 stand for p value less than 0.05, as compared with corresponding
LPS-stimulated PBMC.

of mature Tregs into the lungs of patients. Furthermore,
the present study initially demonstrated that peripheral fre-
quencies of Bregs cells were significantly higher in patients
with lung cancer. Cancer-derived factors and the inter-
action of lung cancer cells with normal PBMCs may con-
tribute to the expansion of Bregs, similar alterations of
Tregs and Bregs observed in our clinical cohort.
Leukocytes within tumors play critical roles in the for-
mation of inflammatory microenvironment and tumori-
genesis, while little has been known about the potential

mechanism to communicate between inflammation and
cancer [25]. The present study explored the relationship
between inflammation and antitumor immunity adopt-
ing an in vitro model based on LPS-stimulated A549
cells. Inflammation-activated lung cancer cells or their
products during the pretreatment could increase the
frequencies of Tregs and CD45RA " Tregs from normal
PBMCs. It seemed that the direct interaction between
cells played a more important role in alterations of
Treg phenotypes than their products which were more
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important in CD45RA*Treg phenotype alterations. Fur-
thermore, continuous LPS stimulation during the inter-
action between cancer cells and PMBCs could increase
frequencies of Tregs and CD45RA " Tregs. The increase of
Tregs might also result from the natural Treg self-
expansion promoted by inflammatory factors or the con-
version of naive CD4" T cells.

Previous study demonstrated that the normal maturation-
activation process of T cells was involved in the sequen-
tial expression of naive T cells, mature T cells, or effector/
cytotoxic T cells [26]. CD45RA " Tregs in the periphery of
humans express high levels of FOXP3 and manifest
equivalent suppressive activity as compared to CD45RO"
Tregs counterparts [27]. Our observation of a higher pro-
portion of CD45RA"Tregs indicates a final maturation-
activation state of those cells promoted by cancer-related
inflammatory factors. Inflammation-activated cancer cells
could also play the initiators and/or secondary sources
of the development of cancer microenvironment and al-
terations of local immunity through the direct interaction
and products. The present study demonstrated that
NE-kB inhibition of inflammation-activated cancer cells
could decrease frequencies of Tregs and CD45RA " Tregs.
Inflammation was also found to stimulate the production
of chemo-attractants from lung cancer cells, responsible
for the recruitment of infiltrated inflammatory cells.

Tumor cells play a crucial role in the conversion of
naive and/or effector T cells into Treg by providing
antigenic stimulation and cytokines, although little has
been known on the influence of cytokines on Treg pro-
liferation or activation during the interaction between
tumor and inflammatory cells. The previous study dem-
onstrated that overexpression of RANTES was associ-
ated with improved prognosis in lung cancer [28]. Lung
cancer cells were found to produce MIP-1la which
might affect the interaction between lung cancer and
host inflammatory cells [29]. The present study ob-
served that mRNA expressions of RANTES and MIP-
la in cancer cells after co-culture of cancer cells and
PBMCs in a concentration-dependent pattern, accom-
panied with the up-regulation of Tregs.

Interaction between PBMCs and inflammation-activated
cancer cells or their products also increased the frequency
of CD19"B cells and the frequency of CD19*CD24"CD27*
B cells in a LPS-concentration dependent manner.
Inflammation-activated cancer cells-driven products
could induce the high expression of cytoplasmic IL-10
in B cells. It seems that the influencing roles of
inflammation-activated cancer cells in the frequencies
of CD19"CD24™CD27" and CD19°IL-10* B cells are
associated with the severities of inflammation. The
interaction between inflammation-activated cancer cells
or their products with PMBCs can play a critical role in
the expansion of Bregs.
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On basis of our finding that co-culture led to pheno-
type alterations of PBMCs from healthy individuals, we
further investigated the role of inflammation-activated
cancer cells in PBMCs from patients with lung cancer
and found similar alterations of Treg and CD45RA " Treg
phenotypes in PBMC from lung cancer patients to those
in healthy donors. However, the interaction between
PBMCs from lung cancer patients with inflammation-
activated cancer cells decreased the frequency of Bregs,
which might be explained by the immune state of can-
cer patients. Growing evidence has shown interaction
between Tregs and Bregs in tumor microenvironment.
A previous study revealed that Bregs in the lung me-
tastasis from breast cancer were able to induce conver-
sion of resting CD4'T cells to Tregs to support
metastatic growth [17]. The observation might also ex-
plain the expansion of Tregs in our co-culture-model.
More investigations are needed to further explore the
interactions between Tregs and Bregs and the under-
lying mechanism, involving mediators from both Tregs
and Bregs or potential network biomarkers [30-38].

In conclusion, we found decreased or increased fre-
quencies of peripheral Tregs or Bregs in patients with
lung cancer where the direct interaction of inflammation-
activated cancer cells may play the critical and dominant
roles (Additional file 2: Figure S2). Effects of lung cancer
cells were associated with the severity of inflammation.
Further studies are needed to reveal the underlying mech-
anisms leading to the alterations of lymphocyte pheno-
types. Strategies against regulatory lymphocytes may be
potential for tumor therapy in the future.

Additional files

Additional file 1: Figure S1. A-1D Experiment designs.
Additional file 2: Figure S2. Experiment summary.
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