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NFATc1 supports imiquimod-induced skin
inflammation by suppressing IL-10 synthesis
in B cells
Hani Alrefai1,2,3,*, Khalid Muhammad1,*, Ronald Rudolf1, Duong Anh Thuy Pham1, Stefan Klein-Hessling1,

Amiya K. Patra1, Andris Avots1, Valesca Bukur4, Ugur Sahin4,5, Stefan Tenzer6, Matthias Goebeler2,

Andreas Kerstan2 & Edgar Serfling1

Epicutaneous application of Aldara cream containing the TLR7 agonist imiquimod (IMQ) to

mice induces skin inflammation that exhibits many aspects of psoriasis, an inflammatory

human skin disease. Here we show that mice depleted of B cells or bearing interleukin

(IL)-10-deficient B cells show a fulminant inflammation upon IMQ exposure, whereas ablation

of NFATc1 in B cells results in a suppression of Aldara-induced inflammation. In vitro, IMQ

induces the proliferation and IL-10 expression by B cells that is blocked by BCR signals

inducing NFATc1. By binding to HDAC1, a transcriptional repressor, and to an intronic site of

the Il10 gene, NFATc1 suppresses IL-10 expression that dampens the production of tumour

necrosis factor-a and IL-17 by T cells. These data indicate a close link between NFATc1 and

IL-10 expression in B cells and suggest NFATc1 and, in particular, its inducible short isoform,

NFATc1/aA, as a potential target to treat human psoriasis.
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P
soriasis is a chronic inflammatory skin disease that affects
2–3% of the population in Western countries1,2. It is
characterized by the uncontrolled hyperproliferation of

keratinocytes (KCs) in the epidermal skin layer that gives rise to
erythematous scaly patches. The classical cellular reaction of
psoriasis is versatile and involves KCs, dendritic cells (DCs),
T lymphocytes, natural killer cells, macrophages and mast cells2.
Since B cells are hardly detected in psoriatic skin, until recently3

their role in psoriasis remained unregarded. It has been assumed
that the pathogenesis of psoriasis includes a decrease in tolerance
towards self-antigens4. A genetic predisposition to injury-induced
activation of KCs may trigger psoriasis. Stressed KCs release
cytokines (for example, interleukin (IL)-1, IL-6, IL-18 and
tumour necrosis factor-a (TNF-a)) and antimicrobial
peptides that recruit macrophages and neutrophils to sites of
evolving inflammation. Cytokines lead to abnormal KC
maturation and activation of DCs5,6. Plasmacytoid DCs that are
known to be involved in antiviral responses have been implicated
in the psoriasis reaction. Plasmacytoid DCs contribute to the
psoriatic events through endosomal TLR7 and TLR9 signalling.
Monocyte-derived mDCs activate different subsets of T cells,
most importantly Th1, Th17 and Th22 cells7. These activated
T-cell subsets release TNF-a, IL-17 and IL-22 that recruit more
inflammatory cells and generate an exaggerated state of KC
proliferation leading to the clinical picture of psoriatic skin6,8.

Imiquimod (IMQ) is a potent agonist of TLR7 in mice and
TLR7 and TLR8 in humans that has initially been introduced for
the treatment of genital warts9. Since the development of
psoriasis-like skin inflammation was reported as a side effect
of IMQ application, IMQ-induced skin inflammation was applied
as a mouse model to study human psoriasis10. The skin of mice
treated with IMQ shows many albeit not all characteristics of
psoriatic skin, for example, acanthosis, papillomatosis,
inflammatory cell infiltrates and altered dermal vascularity. It is
now widely accepted that the topical application of IMQ-
containing Aldara cream to the skin of mice is a rapid and
cost-effective model for studying early events of psoriasis11,12.

The immunosuppressant cyclosporin A (CsA) is approved for
the treatment of moderate to severe psoriasis13. By blocking the
activity of the Ser/Thr-specific phosphatase calcineurin (CN),
CsA prevents dephosphorylation and, thereby, activation of
cytosolic NFAT proteins. Although NFATs are not the only
proteins that are dephosphorylated by CN, it is commonly
accepted that CN/NFAT complexes are the predominant
molecular targets through which CsA blocks the immune
system. NFATs represent a family of five transcription factors
that share a common DNA-binding domain of approximately 300
amino-acid (aa) residues, the Rel homology (or similarity)
domain. In lymphocytes, three out of the four genuine NFATc
members, NFATc1, c2 and 3 (which are also known as NFAT2, 1
and 4, respectively), are expressed and controlled by signals
emerging from immune receptors. The activation of immune
cells via their immune receptors leads to the release of Caþ þ

from intracellular stores, the influx of Caþ þ through calcium
release-activated channels and the rapid activation of CN. Upon
complex formation with Caþ þ , calmodulin and further
co-factors CN binds to NFAT factors and dephosphorylates
their regulatory domain. Thereby, the nuclear localization
sequences of NFATs are exposed that drive cytosolic NFAT
factors into the nucleus14,15.

In addition to the rapid nuclear translocation of preformed
NFAT factors, immune receptor stimuli also induce the massive
generation of NFATc1/aA, a short NFATc1 isoform lacking the
C-terminal domain of approximately 250 aa that is common to
most other NFAT proteins. NFATc1/aA is the most prominent
NFAT protein in nuclei of peripheral T and B lymphocytes

activated by immune receptor signals16. Because of the ability of
NFATc1 to bind to multiple NFAT-binding motifs within a
remote intronic enhancer and to composite kB/NFAT sites
within the P1 promoter region, the appearance of NFATc1/aA is
auto-regulated. This keeps constant high NFATc1/aA levels in
lymphocytes during persistent stimulation by immune
receptors16–18. In contrast to other NFATc proteins that
support the induction of anergy and activation-induced cell
death of lymphocytes, NFATc1/aA supports the survival of
lymphocytes and, thereby, their effector functions16,19. These
and further lines of evidence suggest that in the control of the
immune system—including the generation of autoimmune
diseases—NFATc1/aA exerts a particular function that differs
from that of (most of the) other NFATc factors19.

By ablating NFATc1 expression in B cells we show here that
NFATc1 supports the development of skin inflammation upon
repetitive epicutaneous application of IMQ-containing Aldara
cream on the skin of mice. This effect is mediated by IL-10
since mice bearing B cells double-deficient for IL-10 and NFATc1
show no suppression but a fulminant Aldara-mediated skin
inflammation. Aldara application to the skin of mice for 1 week
leads to an increase in IL-10-producing B10 cells, a decrease in
inflammatory cytokines by T cells and to a massive differentiation
of splenic B cells to Ab-producing cells. In vitro, IMQ treatment
of splenic B cells induces IL-10 RNA synthesis within 1–3 days
that can be suppressed by the induction of NFATc1 through B
cell receptor (BCR) signals. In B cells, NFATc1 binds to the Il10
gene and dampens, in association with HDAC1, the expression of
IL-10 upon IMQ stimulation. These data suggest that targeting
NFATc1 induction in B cells might be a novel therapeutic
approach to treat psoriasis in humans.

Results
Aldara-induced skin inflammation in mice lacking B cells. To
elucidate the role of B cells in skin inflammation, we topically
applied Aldara, a cream containing 5% IMQ, on the shaved back
skin of mice deficient for B cells for 7 consecutive days. Those
mice homozygous for mb1-cre (mb1-creho mice) bear two
mutated mb1/Cd79a alleles created by a knock-in of the cre gene
into the Cd79a locus that codes for the BCR a signalling chain.
Because of the resulting signalling defect, mb1-creho mice possess
a very low number of peripheral B cells (ref. 20 and own
observations).

Aldara application to mb1-creho mice for 7 days induced an
exaggerated skin inflammation that is reflected by erythema,
scaling and thickening (Fig. 1a). Compared with Aldara-treated
wild-type (WT) animals and to mice treated with an emollient
cream as control, mb1-creho mice showed a striking increase of skin
inflammation as reflected by an increased modified Psoriasis Area
and Severity Index (mPASI) adapted to mice (Fig. 1b). Microscopic
examination of haematoxylin and eosin-stained skin sections
from Aldara-treated mb1-creho mice revealed many histological
features of chronic inflammation that are characteristic for human
psoriasis including parakeratosis, acanthosis and elongation of
the dermal papillae (Fig. 1c). Immunohistochemistry showed an
increase in the numbers of KCs expressing keratin K6 and a
decrease in K10-expressing cells in the epidermal layer reflecting
abnormal differentiation, whereas the enhanced expression of
keratin K14 in suprabasal epidermal layers indicated an accelerated
KC proliferation. In addition, as compared with WT mice,
an increase in the epidermal expression of the inflammatory
protein S100A8 was observed in Aldara-treated mb1-creho mice
(Fig. 1c). These findings illustrate the importance of B cells in
counteracting the development of Aldara-induced inflammatory
skin symptoms.
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Figure 1 | Induction of skin inflammation by Aldara cream in mice lacking B cells. Aldara or emollient cream was applied to the shaved back of mice on

7 consecutive days. Mb1-cre homozygous (mb1-cre ho) mice possess a minimal number of B cells. Each experiment was done three times with four mice in

each group. (a) Mice treated with Aldara developed psoriasis-like skin inflammation with erythema, scaling and thickening. (b) mPASI reflecting the

intensity of skin inflammation. Two-tailed unpaired Student’s t-test was performed for statistical analysis. Data are shown as means±s.e.m. (c) Light

microscopy examination of skin sections stained with H&E, or with Abs against the keratins K6, K10 and K14, and S100A8, respectively. Sections of skin

treated with Aldara show, in contrast to skin exposed to emollient cream, parakeratosis (retention of nuclei in the ‘stratum corneum’), acanthosis

(thickening of the ‘stratum spinosum’) and elongation of the dermal papillae. Scale bars, 50mM. H&E, haematoxylin and eosin.
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Attenuated skin inflammation in mice with Nfatc1� /� B cells.
CsA is approved for the systemic treatment of moderate to severe
human psoriasis, and co-application of a cream containing 0.1%
FK506 (tacrolimus), together with Aldara cream, almost
completely suppressed the generation of skin inflammation
caused by Aldara (Supplementary Fig. 1). Because NFAT factors
are activated through the Caþ þ -CN network that can be blocked
efficiently by CsA or FK506, we investigated whether NFATc1,
the most prominent NFAT factor in activated B cells, plays a role
in Aldara-induced skin inflammation. Upon epicutaneous
application of Aldara cream onto Nfatc1f/f x mb1-cre mice bearing
NFATc1-deficient B cells21, we observed a considerable decrease
in inflammation as compared with WT mice (Fig. 2a,b). Upon
adoptive transfer of B cells from WT mice into mb1-creho mice 3
days prior Aldara application, we detected an amelioration of the
mPASI in those mice that otherwise developed fulminant skin
inflammation. Adoptive transfer of Nfatc1� /� B cells led to a
further improvement of the inflammatory symptoms (Fig. 2a,b).
These findings are supported by the expression patterns of
epidermal K6, K10, K14 and S100A8 in lesional skin (Fig. 2c).

Taken together, these findings illustrate that NFATc1
expression in B cells controls Aldara-induced skin inflammation.

NFATc1 affects IL-10 production in B cells. Several lines of
evidence suggested that the suppressive effect of NFATc1 on
Aldara-induced skin inflammation might be exerted through
IL-10 (ref. 21). To address this, we investigated the effect of
Aldara on Il10f/f x mb1-cre mice and on mice bearing B cells
double-deficient for IL-10 and NFATc1. Similar to the effect of
Aldara on the skin of mb1-creho mice we observed a fulminant
skin inflammation in Il10f/f x mb1-cre mice. Moreover, crossing of
Il10f/f x mb1-cre mice with Nfatc1f/f mice indicated that the
protective effect of ablated NFATc1 against Aldara-induced
inflammation (see Fig. 2a,b) was abrogated in the absence of
IL-10 (Fig. 3a and Supplementary Fig. 2). These observations
demonstrate that the inflammatory effect of NFATc1 is mediated
through the inhibition of IL-10.

CD5þCD1dhi B cells have been described as prominent
producers of IL-10 (ref. 22). Aldara application to mouse skin led
to an increase in the percentage of B cells producing IL-10
(designated as B10 or Breg cells) within the population of splenic
B cells3. As demonstrated in Fig. 3b,c and in Supplementary
Fig. 3A,B, the percentage of B10 cells in spleen, LN and blood of
mice bearing Nfatc1� /� B cells was higher upon Aldara
treatment. Another set of IL-10-producing B cells are CD138þ

plasmablast-like cells consisting mainly of IgMþ and IgG1þ

cells. While the percentage of IgG1þ B cells remained constant,
the percentage of IgMþ plasmablasts increased upon NFATc1
ablation (Fig. 3d).

Effector CD4þ T cells are important mediators in the
pathogenesis of human psoriasis23. To investigate whether the
increase in B10 cells in Aldara-treated Nfatc1f/f x mb1-cre mice
affects the cytokine production of effector CD4þ T cells, we
determined the number of CD4þ T cells expressing TNFa, IL-17,
interferon-g (IFN-g) and IL-2 in those mice. To elucidate the IL-
10 dependency of cytokine production, we also determined the
cytokine levels of mice containing B cells deficient for IL-10, or
for both IL-10 and NFATc1. As compared with the WT situation
the numbers of TNFa- and IFN-g-producing CD4þ T cells were
slightly increased (or remained constant) in mice bearing
IL-10- as well as NFATc1/IL-10-deficient B cells (Fig. 3e). In
sharp contrast, the proportion of IL-17-secreting CD4þ T cells
was increased dramatically in those mice as compared with WT
mice. Conversely and in line with the moderate inflammatory
phenotype, the numbers of CD4þ T cells expressing TNFa,

IL-17, IFN-g and IL-2 were largely reduced in Nfatc1f/f x mb1-cre
mice when compared with WT as well as to Il10f/f x mb1-cre and
Nfatc1f/f� Il10f/f x mb1-cre mice (Fig. 3e). These data strongly
suggest that the production of IL-10 by splenic B cells controls the
synthesis of inflammatory cytokines by CD4þ T cells.

When we studied the infiltration of lymphocytes and neutro-
phils into the skin of WT and Nfatc1f/f x mb1-cre mice we observed
a reduction in the number of CD3þ T cells and Gr-1þ

neutrophils but an increase in the number of B220þ B cells upon
Aldara application (Supplementary Fig. 3C,D). From these
findings, one may assume that the appearance of B cells affects
the mobilization of T cells and neutrophils to inflamed skin lesions.

To investigate the effect of IL-10-producing B cells on T cells by
an alternate route, we enriched B10 cells by incubation of splenic
B cells with BAFF for 3 days before co-incubation with T cells
in vitro24. Upon incubation of splenic B cells with
lipopolysaccaride (LPS) and B-cell activating factor (BAFF) for 3
days in vitro, B30% of splenic B cells from Nfatc1f/f x mb1-cre
mice turned into B10 cells (Supplementary Fig. 4A). In co-culture,
such B10 cells reduced the proliferation as well as the production of
IFN-g and, more prominently, TNF-a by CD4þ T cells
(Supplementary Fig. 4B–D). Upon adoptive transfer of B10 cells
into mice, a strong suppressive effect on Aldara-induced skin
inflammation was detected, particularly in case of B10 cells derived
from Nfatc1f/f x mb1-cre mice (Supplementary Fig. 4E).

These data suggest that (i) high levels of IL-10 produced by
B cells suppress Aldara-induced skin inflammation, and (ii) the
suppressive effect of NFATc1 ablation on skin inflammation is
mediated by an overproduction of IL-10.

Aldara triggers the differentiation of splenic B cells. NFATc1
might affect Aldara-mediated IL-10 production of B cells in two
ways that are not mutually exclusive: (i) by interfering with the
differentiation of splenic B cells to B10 cells; or (ii), more directly,
by inhibiting the synthesis of IL-10 in B10 cells. To elucidate
whether and how Aldara affects the differentiation of B cells, we
immunoblotted protein lysates obtained from splenic B cells of
mice treated for 1, 3 or 7 days with Aldara with Abs raised against
murine IgM, IgG, IgE or IgA (Fig. 4a and Supplementary Fig. 5).
Within 7 days, the splenic B cells of those mice developed from
‘naive’ B cells producing only (membranous and secreted) IgM to
plasmablast-like cells producing (secreted) IgM, IgG, IgE and IgA.
Although Aldara cream exerted the strongest effect on this
differentiation program, emollient used as control appeared to
stimulate B-cell differentiation as well. This might be in line with
a previous report on the TLR7/IMQ-independent, stimulatory
activity of Aldara cream on the murine immune system25.
NFATc1 ablation did not markedly affect the expression of IgM,
while it enhanced moderately IgG and IgE production (Fig. 4a
and Supplementary Fig. 5). The effect of NFATc1 on IgG was
confirmed by incubation of B cells on Kitamura’s 3T3 feeder layer
cells expressing CD40L and BAFF in the presence of IL-4
(ref. 26). Upon incubation for 4 days, almost twofold more
Nfatc1� /� B cells developed to IgG1þ cells than WT cells
(Supplementary Fig. 6).

Western blot analysis of NFATc1 expression in splenic B cells
obtained from mice treated with emollient for 1–3 days
(in Fig. 4b) revealed a certain level of NFATc1/aA, compared
with the lack of any NFATc1/aA in (naive) splenic B cells
from untreated mice. However, when mice were treated with
Aldara for 3–7 days the strong induction of NFATc1/aA by
a-IgM for 24 h—as seen in (naive) splenic B cells (Supplementary
Fig. 7A)—was abolished (Fig. 4b and Supplementary Fig. 7C).
Instead, an increase in IgM was observed (Fig. 4c, bottom).
These data find support in B-cell proteins from mice treated for
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Figure 2 | NFATc1 ablation in B cells suppresses the induction of skin inflammation by Aldara. Aldara cream was applied to the shaved backs of mice for

7 days. Splenocytes were isolated from WT mice and mice bearing Nfatc1� /� B cells and adoptively transferred to mb1-cre homozygous mice 3 days before

Aldara application. Each experiment was performed three times with four mice in each group. (a) Naked eye picture examination of psoriasis-like skin

inflammation (erythema, scaling and thickening) in mice treated with Aldara. (b) mPASI after application of Aldara. Two-tailed unpaired Student’s t-test

was used for statistical analysis. Data are shown as means±s.e.m. (c) Light microscopic examination of skin sections stained with H&E or immunolabeled

with Abs directed against K6, K10, K14, or S100A8. Scale bars, 50mM. H&E, haematoxylin and eosin.
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7 days by Aldara cream that do not show any NFATc1/a but
Ig expression instead (see lanes 2, 4 and 6 in Supplementary
Fig. 7C). However, when splenic B cells from those mice were
treated by TPAþ ionomycin instead by a-IgM for 24 h, induction
of NFATc1/aA was observed (Supplementary Fig. 7D).
This shows that in spite of an overall decrease of NFATc1 levels
in splenic B cells from Aldara-treated mice they have the capacity
to induce NFATc1/aA.

Taken together, these data indicate that Aldara application for
7 days leads (i) to the differentiation of ‘naive’ splenic B cells to
plasmablast-like cells that (ii) show a marked alteration in their
capacity to induce NFATc1.

NFATc1 binds to and suppresses the Il10 gene. Stimulation of
splenic B cells by aIgM mAb leads to a rapid increase in IL-10
RNA levels that peak within 2 h but decrease upon further
stimulation in vitro. A similar, albeit somewhat weaker IL-10
RNA induction was detected in Nfatc1� /� B cells
(Supplementary Fig. 8A). In contrast to aIgM but similar to LPS
(Supplementary Fig. 8B), IMQ treatment of freshly prepared
splenic B cells resulted in a strong increase in IL-10 RNA
levels within 6 and 24 h, which persisted upon stimulation for
48 h (Fig. 5a). This is reflected in the increase of CD5þCD1dþ

B cells among splenic B cells and of approximately twofold more
CD5þCD1dþ IL-10þ B cells (Supplementary Fig. 8C,D).
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Figure 3 | NFATc1 affects the expression of inflammatory cytokines by CD4þ T cells via B-cell-derived IL-10. (a) Skin inflammation as reflected by

mPASI after application of Aldara onto the skin of Il10 f/f x mb1-cre, Il10f/f x Nfatc1f/f x mb1-cre, Nfatc1f/f x mb1-cre and WT mice. (b) Increase of CD5þCD1dþ

B cells in WT and Nfatc1f/f x mb1-cre mice upon emollient or Aldara application. (c) Increase of splenic B10 cells in mice bearing NFATc1-deficient B cells.

Each symbol represents one animal that was treated with Aldara for 7 days. (d) Increase of IgMþ CD138þ IL-10þ B cells in Nfatc1f/f x mb1-cre mice upon

Aldara application for 7 days. (e) Decrease in number of CD4þT cells expressing inflammatory cytokines in mice bearing NFATc1-deficient B cells. T cells

were incubated on a-CD3/CD28 (10 and 3mg ml� 1, respectively) for 72 h followed by intracellular staining and flow cytometry. Two-tailed unpaired

Student’s t-test was used for statistical analysis. Data are shown as means±s.e.m.
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Since Nfatc1� /� B cells showed about the same IMQ-mediated
induction of IL-10 mRNA as WT B cells, NFATc1 seems to play a
minor, if any role in the IMQ-induced synthesis of IL-10 mRNA
under these conditions. However, by adding aIgM mAb to
IMQ-treated B cell cultures the induction of IL-10 mRNA was
strongly suppressed in WT B cells, whereas no (or a weak)
suppression was observed in Nfatc1� /� B cells (Fig. 5b). Since
aIgM mAb stimulation of IMQ-treated B cells resulted in a
massive induction of NFATc1/aA within 24 h (Fig. 5c, lanes
9þ 10), these data suggest that depending on the cellular context
NFATc1/aA is able to suppress IMQ-mediated induction of IL-10
RNA in B cells.

To analyse if the transcription factor NFATc1 acts as a direct
negative regulator of the Il10 gene, we used WEHI 231
B lymphoma cells that (over-) express chimaeric NFATc1/A-
bio-proteins (Fig. 6a). WEHI 231 cells produce constitutively
100-fold more IL-10 RNA than non-induced primary B cells
(Fig. 6b). By co-expressing the biotin-ligase BirA and chimaeric
NFATc1-bio proteins, this allows the rapid isolation of
crosslinked NFATc1/chromatin complexes in chromatin
immunoprecipitation (ChIP) assays (Fig. 6c), and of NFATc1

partners in mass spectrometry (MS) assays using magnetic
streptavidin beads (Fig. 6e and Supplementary Table 1). Next-
generation sequencing of the transcriptome of aIgM-stimulated
WEHI cells showed that ectopic (over-) expression of NFATc1/
aA-bio led to a 2–3-fold reduction in Il10 RNA levels, whereas
IL-10 expression in NFATc1/�C-bio-overexpressing cells remained
almost unaffected (Fig. 6b). The negative effect of NFATc1/aA on
IL-10 mRNA expression was even more pronounced after a-IgM
mAb stimulation, especially after 24 and 96 h as compared with
control (BirA) or NFATc1/�C overexpression.

For the detection of NFATc1 binding to the Il10 gene, we
selected primer pairs of three regions within and around the
murine Il10 gene that have been shown in ChIP seq assays to be
bound by NFATc2 in CD8þ T cells (Fig. 6d)27. Whereas in our
individual ChIP assays the primers of regions 1 and 3 located
upstream or downstream from the Il10 gene did not give rise to
any PCR product, primers from the last Il10 intron amplified
DNA that was isolated from crosslinked chromatin bound to
streptavidin beads and, therefore, were bound by NFATc1-bio-
proteins. While no NFATc1 binding was detected in cells
expressing BirA only, a similar binding was detected for
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NFATc1/A- and NFATc1/C-bio proteins (Fig. 6c). This shows
that in WEHI B lymphoma cells NFATc1 can bind to the Il10
gene in vivo and suppresses its transcription.

We had shown previously that in T cells NFATc1/C
sumoylated at its C-terminal region is bound by histone
deacetylases (HDACs) and suppresses the expression of the Il2
gene28. To show whether in B cells NFATc1/aA is associated with
HDACs we isolated chimaeric NFATc1/A-bio-protein from
WEHI cells (Fig. 6e) and determined associated proteins in MS
assays. Among the proteins bound to NFATc1/A-bio, in all
sequencing reactions we detected—apart from CN peptides29 and
IRF4 (ref. 30) as known NFATc binding partners—HDAC1, but
no other HDAC nor any sirtuin member (Supplementary
Table 1). This finding is supported by the increase of IL-10
RNA levels upon inhibition of HDAC activity in splenic B cells
stimulated by IMQ and aIgM for 24 h, followed by co-incubation
for 12 h with trichostatin A (TSA), a specific inhibitor of class I
and II HDACs (ref. 31 and Fig. 6f). Moreover, treatment of
splenic B cells with TPA and ionomycin (which mimics aIgM
stimulation) led to an increase in binding of HDAC1 to the
intronic site 2 of the Il10 gene in vivo. The simultaneous increase
of histone mark H3K4me3, a sign for gene transcription, at this
site might reflect the transient nature of Il10 expression under
those stimulatory conditions (Fig. 6g).

Discussion
Among the numerous mouse models used for studying
human psoriasis32, the repetitive epicutaneous application of
IMQ-containing Aldara cream to the shaved mouse skin
represents a versatile and efficient experimental regimen to
study early events of human disease10,33. The results of our study
confirm the data of an earlier report on the important role of
IL-10 produced by B cells in Aldara-induced skin inflammation3

and extend these observations by demonstrating the suppressive
effect of NFATc1 on IL-10 production by B cells and on
Aldara-mediated skin inflammation.

In mice, CD5þCD1dhi B cells have been described as
regulatory B cells (Bregs) that control experimental skin
inflammation through the secretion of IL-10 (ref. 3). Similar to
Tregs, Bregs tune immune reactions through affecting the release
of cytokines34. They exert a regulatory influence on monocytes,
T cells (on conventional CD4þT, Th1 and Th17 cells) and other
B cells35. However, it is currently unclear and a matter of dispute
whether similar to regulatory T (Treg) cells expressing Foxp3,
Breg cells correspond to a particular subset of B cells with a
specific developmental fate and function, or whether any B cell
can be converted to IL-10-producing Breg/B10 cells by
inflammatory signals36. Those signals play a major role in the
differentiation to B10 cells that show, otherwise, often features of
plasmablasts or plasma cells37.

While our study deals with the role of NFATc1 in controlling
IL-10 production and skin inflammation by B cells, it is likely
that—in addition to B cells—the enhanced expression of NFATc1
in other cells of psoriatic skin contributes to the induction and/or
maintenance of disease. In T cells, NFATc1 stimulates the
expression of several genes that are highly expressed during
psoriasis, as the Ccl3 and Ccl4 chemokine genes. Several S100
Caþ þ -binding proteins that are strongly expressed in psoriatic
skin38,39 are NFAT targets, or controlled by the Caþ þ /CN
network. NF-kB is constitutively activated in psoriatic epidermis,
and we showed recently that NF-kB factors support the induction
of NFATc1/aA in murine lymphocytes16. Therefore, one
may speculate that this event, that is, the NF-kB-mediated
support of NFATc1/a induction, plays also a role in the
development of disease. In KCs of human skin, both NFATc1
and c2 are expressed40–42, and NFATc1 was shown to exert a
strong stimulatory effect on the proliferation of KCs. This is
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exemplified by RNAi-mediated knockdown of NFATc1 in an
organotypic skin equivalent model leading to reduced epidermal
thickness41.

The epicutaneous application of IMQ-containing Aldara cream
to the murine skin does not only induce pathways downstream of
TLR7 but also numerous other signalling events that induce
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inflammatory events. One of the first events following Aldara/
IMQ application is the massive induction of epidermal cell
death25, and apoptotic cells were shown to induce IL-10 in a large
proportion of splenic B cells43. However, necroptosis seems also
to play an important role in the death of KCs, and it is likely that
by the release of numerous damage-associated molecular
patterns, necroptotic KCs are potent triggers of inflammation.
By their disintegration, necroptotic cells release many
damage-associated molecular patterns, such as cytokines of the
IL-1 family, the S100 proteins S100A8 and A9, nucleic acids,
nucleoproteins, histones and heat-shock proteins44,45 that are
able to induce inflammation. Although so far, the role
of necroptosis in psoriasis has not been investigated45, the
results of several murine models of the disease suggest
necroptosis as a potent trigger of inflammation46–48.

In Aldara-induced skin inflammation, the massive death of
KCs appears to induce the activation and differentiation of the
murine immune system, including splenic B cells. Within 1–3
days of emollient application we observed the induction of
NFATc1/aA in splenic B cells (Fig. 4b). However, application
of Aldara cream for 3 days and longer did not lead to a further
increase but to a decrease in NFATc1 levels. Persistent Aldara
application led to a switch in IgM proteins and Ig heavy chains,
and the differentiation of splenic B cells to Ab-producing cells
(Fig. 4a and Supplementary Fig. 5). Therefore, with the onset of
massive and persistent inflammation of KCs in vivo, splenic
B cells become unresponsive to IgM signals, as it is documented
in the inability to induce NFATc1/aA by a-IgM (Fig. 4b and
Supplementary Fig. 7B,C). Instead, signals other than those
mediated by a-IgM control the fate of such plasmablast-like
B cells which, however, have the capacity to induce NFATc1/aA.
This is reflected by the ability of splenic B cells from
Aldara-treated mice to induce NFATc1/aA upon TPAþ
ionomycin treatment (Supplementary Fig. 7D).

The interplay between NFATc1 activity and IL-10 production
is not only restricted to the generation of psoriasis-like symptoms
but also involved in other autoimmune diseases. For CD4þ T
cells from pediatric lupus patients high NFATc1 levels were
detected that are correlated with an increased and prolonged
CD154/CD40 ligand expression and glomerulonephritis49.
Similar data were reported for the CD4þ T cells of MRL/lpr
mice50, a murine model of human systemic lupus erythematosus.
The increased CD154 expression on CD4þ T cells affects both
B-cell differentiation51 and supports strongly the induction of
NFATc1 in B cells16 that might result in repression of IL-10
production, which is characteristic for B cells of systemic lupus
erythematosus patients52. Inactivation of NFATc1 in B cells led to
an increase in IL-10 production and amelioration of symptoms of
MOG-mediated experimental autoimmune encephalomyelitis21,
and inactivating both Nfatc1 and Nfatc2 genes in T cells abolished
the generation of experimental autoimmune encephalomyelitis
symptoms53.

These and further data suggest that the NFATc1-mediated
inhibition of IL-10 expression might be of general impact for the
development of autoimmune diseases and a novel target how to
treat them. Although the CN and NFAT inhibitors CsA and
FK506 have been used for many years to treat autoimmune
diseases, including psoriasis, their numerous side effects restrict
their prolonged application. Instead, the selective inhibition of
NFATc1 induction, in particular of NFATc1/aA, might
specifically affect the (hyper-) activity of lymphoid cells. Our
data presented here suggest that such a therapy could lead to an
increase in IL-10 levels that, as shown in earlier studies, is
of benefit for psoriasis patients54,55. Albeit there is currently
no IL-10 therapy that passed clinical phase III studies55,
enhanced IL-10 levels certainly support other therapies, such

by antibodies raised against IL-17, IL-17 receptor and IL-23 that
showed promising therapeutic results in phase III studies with
psoriasis patients56. It remains a challenging task to elucidate
whether the manipulation of NFATc1 and IL-10 activities, alone
or together with those of IL-17 and IL-23, will be of benefit
for patients suffering from psoriasis and other autoimmune
diseases.

Methods
Mice and the induction of skin inflammation by Aldara. If not stated otherwise,
8–12-week-old C57BL/6 mice were used. Animal experiments were performed
according to project licenses (No. 55.2–2523.01/10B and 32/14), which were
approved and controlled by the ‘Regierung von Unterfranken, Würzburg’. Nfatc1f/f

x mb1-cre mice (C57BL/6) were described previously21. To generate mice bearing
IL-10-deficient B cells, Il10 f/f mice57, were crossed with mb1-cre mice. To get mice
double-deficient for NFATc1 and IL-10 (on C57BL/6 background), mb1-cre mice
were crossed with mice bearing Nfatc1f/f and Il10f/f alleles. For Aldara-induced skin
inflammation, mice were anaesthetized and their upper back was shaved. An
amount of 62.5 mg Aldara cream (containing 5% IMQ, 25% isostearic acid, 2%
benzyl alcohol, 2.2% cetyl alcohol, 3.1% stearyl alcohol, 3% white petrolatum, 3.4%
polysorbate 60, 0.6% sorbitan monostearate, 2% glycerol, 0.2% methyl paraben,
0.02% propyl paraben, 0.5% xanthan gum in 52.98% water) were applied daily for
7 d. Control mice were treated with a comparable emollient cream (DAC
Basiscreme, containing glycerol monostearate, 4%; cetyl alcohol, 6%; triglycerides,
7.5%; white petrolatum, 25.5%; macrogol-20-glycerol monostearate, 7%;
propylenglycol, 10%; purified water, 40%). To score the severity of skin
inflammation we used a mPASI, as described in detail previously3.

Histology. Three micrometre paraffin sections of lesional skin were dewaxed and
rehydrated with xylene and graded alcohols followed by heat-induced antigen
retrieval by boiling in citrate buffer pH 6.0 (Dako) for 10 min. After quenching
endogenous peroxidase with hydrogen peroxide, sections were incubated with the
relevant Abs at 1 mg ml� 1 (K6, K10, K14, Covance, New Jersey; S100A8, LifeSpan
BioSciences, Seattle) or control Ab for 1 h at 37 �C. This was followed by incubation
with the appropriate biotin-conjugated secondary Ab (VectorLabs, CA) and
streptavidin-conjugated horseradish-peroxidase (VectorLabs) at room temperature
for 1 h. Incubation with the peroxidase-specific substrate 3-amino-9-ethylcarbazole
(Sigma-Aldrich) was used for visualization, with haematoxylin counterstaining.
Abs against keratin 6 (K6, #PRB-169P; 2 mg ml� 1), 10 (K10, #PRB-159P;
1 mg ml� 1) and 14 (K14, #PRB-155P) were from Covance, against S100A8
(LS-B8014) from LifeSpan Biosciences, against B220 (#103202) and Gr-1 (#108402)
from BioLegend, and against CD3G (#ab134096) from Abcam.

B- and T-cell isolation and culture. Splenic B and CD4þT cells were isolated
using Miltenyi’s cell isolation kits (mouse; no. 130-090-862 and 130-049-201,
respectively) to a purity of 95–98% as determined by flow cytometry. B cells were
cultured in X-vivo 15 medium (Lonza)21. If not stated otherwise, splenic B cells
were stimulated with 10 mg ml� 1 a-IgM (F(ab’)2 fragment goat anti-mouse IgM
(Jackson ImmunoResearch Laboratories), or 10 mg ml� 1 LPS (Sigma-Aldrich)
and/or 5 mg ml� 1 a-CD40 (R&D Systems), or with 100 ng ml� 1 TPA and 0.5 mM
ionomycin, or 1–10 mg ml� 1 IMQ (MCE, MedChem Express) for 2–48 h, as
indicated in the figures. Isolated primary T cells were incubated in X-vivo medium
on wells pre-coated with a-CD3/CD28 (10 and 3 mg ml� 1, respectively) for 72 h
followed by intracellular staining and flow cytometry. Murine WEHI 231 cells were
maintained in RPMI-1640 containing 10% FCS at 37 �C in 5% CO2.

Expression of NFATc1-bio-proteins in WEHI 231 B cells. Full-length murine
NFATc1/aA (gi:255759918 in NCBI database) and NFATc1/bC cDNAs
(gi: 255759924) were amplified, fused to a bio/avidin-tag (ref. 58) and ligated into
the retroviral expression vector pEGZ (ref. 59). The retroviral pMSCV-F-BirA
vector was purchased from BCCM/LMBP (Gent-Zwijnaarde, Belgium). Retroviral
particles were obtained after transfection of retroviral vectors, along with the
retroviral packaging plasmids pHIT60 and pHIT123, into HEK 293T cells. After
infection, WEHI cells were kept under selective conditions (using zeocin or
puromycin) for 14 days. Positive integration and expression of NFATc1/aA-bio,
NFATc1/bC-bio and/or BirA constructs was determined by intracellular
streptavidin-fluorophore labelling and flow cytometry.

Protein digestion and quantitative proteomic analysis. NFATc1-interacting
proteins were eluted from streptavidin beads using a buffer containing 7 M urea,
2 M thiourea, 2% CHAPS, 10 mM biotin and digested with sequencing-grade
trypsin (Trypsin Gold, Promega) using a modified FASP protocol60. After FASP
digest, resulting tryptic peptides were concentrated to 20 ml by lyophilization. Five
microlitre of 100 fmol ml� 1 MassPrep Enolase Digestion Standard (Waters) were
added to each sample and transferred into an autosampler vial. For nanoUPLC-MS
analysis, 0.4 ml were used per injection. Samples were analysed in three technical
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replicates. Tryptic peptides were separated by reversed-phase nanoUPLC in direct
injection mode on a Waters nanoAcquity System equipped with a C18 HSS-T3
75mm� 250 mm column using a gradient from 4 to 40% B over 90 min as
described before61. Buffer A was 0.1% formic acid in waterþ 3% DMSO. Buffer B
was 0.1% formic acid in acetonitrile þ 3% DMSO. The column was coupled to a
nanoelectrospray source on a Waters Synapt G2-S mass spectrometer operated in
ion-mobility enhanced, data-independent acquisition mode as described
previously61. Resulting raw data files were processed by Protein Lynx Global Server
(PLGS, v3.0.2) and database search was performed against the mouse UniProt
Reference Proteome database supplemented with common contaminants
(trypsin, bovine serum albumin, human keratins and so on) as described61. Data
post processing and TOP3-based label-free quantification were performed in the
ISOQuant Software61.

Flow cytometry. B cells were washed once in cold PBS containing 0.1% BSA
(FACS buffer) before blocking with anti-FcgRII/FcgRIII (2.4G2, BD Pharmingen,
San Diego, CA). Stainings were performed on ice using conjugated mAbs
(eBioscience, San Diego, CA, if not stated otherwise), diluted 1:300 in FACS buffer
for surface marker and 1:200 for intracellular cytokine staining followed by
incubation for 20 min. After washing with FACS buffer, cells were analysed on a
FACS Canto II (BD) using FlowJo software (Tree star, Ashland, OR). The following
Abs were used: B220-FITC (#11-0452-86), CD5-PE-Cy7 (#25-0051-81), CD1d-PE
(#12-0011-81), CD138-APC (#142506, Biolegend), IgM-FITC (#11-5890-85),
IgG1-PE (#12-4015-82), CD4-FITC (#11-0041-82), IL-2-APC (#17-7021-81),
IFNg-APC (#17-7311-82) and IL-10-PerCP (#45-7101-80). Abs against
TNF� a�PE (#130-092-245) and IL-17-PE (#130-094-296) were from Miltenyi
Biotec. For intracellular staining, the fixation and permeabilization kit (Plus
Brefeldin A; eBioscience, Cat. no. 88-8823-88) was used according to
manufacturer’s recommendation.

Western blotting. Whole-protein extracts from B cells were prepared by lysis of
frozen cells in 60–100 ml RIPA buffer (pH 7.5, 50 mM Tris containing 150 mM
NaCl, 1% Triton-X100 on ice for 20 min), followed by centrifugation and
measurement of protein content. Western blots were performed by fractionating
protein extracts (5–100 mg protein per lane) on SDS–polyacrylamide gel gels
followed by immunodetection of NFATc1 using the 7A6 mAb (Santa Cruz or BD)
or a polyclonal Ab (IG-457; ImmunoGlobe) raised against NFATc1 a-peptide.
Protein loading was controlled by Ponceau red staining of membranes. Signals
were visualized by chemoluminescence using Super Signal (Thermo Fisher
Scientific). Images have been cropped for presentation. The uncropped data for
blot and gel images can be found in Supplementary Figs 9–12.

ChIP. ChIP assays were performed as described62,63 with slight modifications. In
brief, 5� 107 WEHI-231 or primary splenic B cells were fixed, the reaction was
quenched and washed cells were resuspended in 1 ml swelling buffer on ice for
30 min. Upon adding 40ml of 10% NP-40, cells were passed 8� through 21G
needles, nuclei were collected and resuspended in 0.5 ml sonication buffer.
Chromatin was sheared for 10 min (30 s pulses; 35% amplitude) on ice using an
ultrasonic-disintegrator (Sonicor). DNA extracts of supernatants were checked for
fragment sizes and quantified using a NanoDrop device (ThermoScientific).
Chromatin was pre-cleared with 3 mg unrelated Ig Ab (CellSignaling, #2729p) and
40ml immobilized protein G beads (ImmunoPure PIERCE, 50% slurry saturated
with salmon sperm DNA, #16–157, Upstate; and 2% gelatin from cold water fish
skin (FGEL), Sigma-Aldrich, #G7765). Chromatin in 300 ml sonication buffer was
incubated with 25 ml of streptavidin agarose resin (ThermoScientific, #20347; 50%
slurry saturated with Salmon Sperm DNA and FGEL) (Fig. 6c), or with 3 mg Ab
against HDAC1 (Abcam,#ab109411) or H3K4me3 (Abcam, #ab8580)(Fig. 6g) at
4 �C overnight. Beads were carefully washed, and chromatin complexes were eluted
twice by incubation with 250 ml elution buffer. Eluates were supplemented with
21ml 5 M NaCl and 2 ml RNase (10 mg ml� 1) for removal of crosslinks. DNA was
extracted for PCR assays using the following primers from intron 4 of murine Il10
gene:

Il10-forward: 50-CACTAAGTTCCATAAACCGGAAA-30; Il10-reverse: 50-TG
TGTAAAAGCCCCAGAACC-30.

RNA-Seq assays. RNA of deep-frozen splenic B cells or WEHI 231 B cells was
extracted using Qiagen’s RNeasy kit and Illumina’s RNA purification beads.
RNA-Seq libraries for next-generation sequencing were prepared from 600 ng
starting material using Illumina’s TruSeq RNA Sample Prep Kit V2 following the
manufacturer’s instruction. The resulting barcoded cDNA libraries were sequenced
in one lane on an Illumina HiSeq 2000 (splenic B cells) or HiSeq 2500 (WEHI 231
B cells) platform for 50 nucleotides (single end). The data were loaded into
ArrayExpress (accession no. E-MTAB-4665).

Statistical analysis. Statistical analyses were performed using GraphPad (Prism)
software, version 6.0. Data presented as mean and error bars in the figures
represent±s.e.m. Unpaired t-tests were performed to evaluate the statistical

significance of the data set. Statistical significances were calculated and indicated
(***Po0.001, **Po0.005 and *Po0.05).

Data availability. Data generated during this study is available in a public
repository-ArrayExpress with accession no. E-MTAB-4665.
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