1,694 research outputs found

    Electrical and ultraviolet characterization of 4H-SiC Schottky photodiodes

    Get PDF
    Fabrication and electrical and optical characterization of 4H-SiC Schottky UV photodetectors with nickel silicide interdigitated contacts is reported. Dark capacitance and current measurements as a function of applied voltage over the temperature range 20 °C – 120 °C are presented. The results show consistent performance among devices. Their leakage current density, at the highest investigated temperature (120 °C), is in the range of nA/cm2 at high internal electric field. Properties such as barrier height and ideality factor are also computed as a function of temperature. The responsivities of the diodes as functions of applied voltage were measured using a UV spectrophotometer in the wavelength range 200 nm - 380 nm and compared with theoretically calculated values. The devices had a mean peak responsivity of 0.093 A/W at 270 nm and −15 V reverse bias

    Dipolar origin of the gas-liquid coexistence of the hard-core 1:1 electrolyte model

    Get PDF
    We present a systematic study of the effect of the ion pairing on the gas-liquid phase transition of hard-core 1:1 electrolyte models. We study a class of dipolar dimer models that depend on a parameter R_c, the maximum separation between the ions that compose the dimer. This parameter can vary from sigma_{+/-} that corresponds to the tightly tethered dipolar dimer model, to R_c --> infinity, that corresponds to the Stillinger-Lovett description of the free ion system. The coexistence curve and critical point parameters are obtained as a function of R_c by grand canonical Monte Carlo techniques. Our results show that this dependence is smooth but non-monotonic and converges asymptotically towards the free ion case for relatively small values of R_c. This fact allows us to describe the gas-liquid transition in the free ion model as a transition between two dimerized fluid phases. The role of the unpaired ions can be considered as a perturbation of this picture.Comment: 16 pages, 13 figures, submitted to Physical Review

    Microvascular Endothelial Dysfunction in Sedentary, Obese Humans Is Mediated by NADPH Oxidase Influence of Exercise Training

    Get PDF
    Objective—The objectives of this study were to determine the impact of in vivo reactive oxygen species (ROS) on microvascular endothelial function in obese human subjects and the efficacy of an aerobic exercise intervention on alleviating obesity-associated dysfunctionality. Approach and Results—Young, sedentary men and women were divided into lean (body mass index 18–25; n=14), intermediate (body mass index 28–32.5; n=13), and obese (body mass index 33–40; n=15) groups. A novel microdialysis technique was utilized to detect elevated interstitial hydrogen peroxide (H2 O2 ) and superoxide levels in the vastus lateralis of obese compared with both lean and intermediate subjects. Nutritive blood flow was monitored in the vastus lateralis via the microdialysis-ethanol technique. A decrement in acetylcholine-stimulated blood flow revealed impaired microvascular endothelial function in the obese subjects. Perfusion of apocynin, an NADPH oxidase inhibitor, lowered (normalized) H2 O2 and superoxide levels, and reversed microvascular endothelial dysfunction in obese subjects. After 8 weeks of exercise, H2 O2 levels were decreased in the obese subjects and microvascular endothelial function in these subjects was restored to levels similar to lean subjects. Skeletal muscle protein expression of the NADPH oxidase subunits p22phox, p47phox, and p67phox was increased in obese relative to lean subjects, where p22phox and p67phox expression was attenuated by exercise training in obese subjects. Conclusions—This study implicates NADPH oxidase as a source of excessive ROS production in skeletal muscle of obese individuals and links excessive NADPH oxidase–derived ROS to microvascular endothelial dysfunction in obesity. Furthermore, aerobic exercise training proved to be an effective strategy for alleviating these malad

    Annihilation range and final-state interaction in the antiproton-proton annihilation into pi-pi+

    Full text link
    The large set of accurate data on differential cross section and analyzing power from the CERN LEAR experiment on pˉpπ+π\bar pp \to \pi^+\pi^- in the range from 360 to 1550 MeV/c is well reproduced within a distorted wave approximation approach. The initial pˉp\bar pp scattering wave functions originate from a recent NˉN\bar N N model. The transition operator is obtained from a combination of the 3P0^3P_0 and 3S1^3S_1 quark-antiquark annihilation mechanisms. A good fit to the data, in particular the reproduction of the double dip structure observed in the analyzing powers, requires quark wave functions for proton, antiproton, and pions with radii slightly larger than the respective measured charge radii. This corresponds to an increase in range of the annihilation mechanisms and consequently the amplitudes for total angular momentum J=2 and higher are much larger than in previous approaches. The final state ππ\pi\pi wave functions, parameterized in terms of ππ\pi\pi phase shifts and inelasticities, are also a very important ingredient for the fine tuning of the fit to the observables.Comment: 11 pages, 11 figures (Revtex 4), revised version with one additional figure. Accepted for publication in PR

    Can Barrier to Relative Sliding of Carbon Nanotube Walls Be Measured?

    Full text link
    Interwall interaction energies, as well as barriers to relative sliding of the walls along the nanotube axis, are first calculated for pairs of both armchair or both zigzag adjacent walls of carbon nanotubes with a wide range of radiuses. It is found that for the pairs with the radius of the outer wall greater than 5 nm both the interwall interaction energy and barriers to the relative sliding per one atom of the outer wall only slightly depends on the wall radius. A wide set of the measurable physical quantities determined by these barriers are estimated as a function of the wall radius: shear strengths and diffusion coefficients for relative sliding of the walls along the axis, as well as frequencies of relative axial oscillations of the walls. For nonreversible telescopic extension of the walls, maximum overlap of the walls for which threshold static friction forces are greater than capillary forces is estimated. Possibility of experimental verification of the calculated barriers by measurements of the estimated physical quantities is discussed.Comment: 16 pages, 8 figure

    Conductance and persistent current of a quantum ring coupled to a quantum wire under external fields

    Full text link
    The electronic transport of a noninteracting quantum ring side-coupled to a quantum wire is studied via a single-band tunneling tight-binding Hamiltonian. We found that the system develops an oscillating band with antiresonances and resonances arising from the hybridization of the quasibound levels of the ring and the coupling to the quantum wire. The positions of the antiresonances correspond exactly to the electronic spectrum of the isolated ring. Moreover, for a uniform quantum ring the conductance and the persistent current density were found to exhibit a particular odd-even parity related with the ring-order. The effects of an in-plane electric field was also studied. This field shifts the electronic spectrum and damps the amplitude of the persistent current density. These features may be used to control externally the energy spectra and the amplitude of the persistent current.Comment: Revised version, 7 pages and 9 figures. To appear in Phys. Rev.

    A guanosine 5′-triphosphate-dependent protein kinase is localized in the outer envelope membrane of pea chloroplasts

    Get PDF
    A guanosine 5-triphosphate (GTP)-dependent protein kinase was detected in preparations of outer chloroplast envelope membranes of pea (Pisum sativum L.) chloroplasts. The protein-kinase activity was capable of phosphorylating several envelope-membrane proteins. The major phosphorylated products were 23- and 32.5-kilo-dalton proteins of the outer envelope membrane. Several other envelope proteins were labeled to a lesser extent. Following acid hydrolysis of the labeled proteins, most of the label was detected as phosphoserine with only minor amounts detected as phosphothreonine. Several criteria were used to distinguish the GTP-dependent protein kinase from an ATP-dependent kinase also present in the outer envelope membrane. The ATP-dependent kinase phosphorylated a very different set of envelope-membrane proteins. Heparin inhibited the GTP-dependent kinase but had little effect upon the ATP-dependent enzyme. The GTP-dependent enzyme accepted phosvitin as an external protein substrate whereas the ATP-dependent enzyme did not. The outer membrane of the chloroplast envelope also contained a phosphotransferase capable of transferring labeled phosphate from [-32P]GTP to ADP to yield (-32P]ATP. Consequently, addition of ADP to a GTP-dependent protein-kinase assay resulted in a switch in the pattern of labeled products from that seen with GTP to that typically seen with ATP

    Did Galaxy Assembly and Supermassive Black-Hole Growth go hand-in-hand?

    Full text link
    In this paper, we address whether the growth of supermassive black-holes has kept pace with the process of galaxy assembly. For this purpose, we first searched the Hubble Ultra Deep Field (HUDF) for "tadpole galaxies", which have a knot at one end and an extended tail. They appear dynamically unrelaxed -- presumably early-stage mergers -- and make up ~6% of the field galaxy population. Their redshift distribution follows that of field galaxies, indicating that -- if tadpole galaxies are indeed dynamically young -- the process of galaxy assembly generally kept up with the reservoir of field galaxies as a function of epoch. Next, we present a search for HUDF objects with point-source components that are optically variable (at the >~3.0 sigma level) on timescales of weeks--months. Among 4644 objects to i_AB=28.0 mag (10 sigma), 45 have variable point-like components, which are likely weak AGN. About 1% of all field objects show variability for 0.1 < z < 4.5, and their redshift distribution is similar to that of field galaxies. Hence supermassive black-hole growth in weak AGN likely also kept up with the process of galaxy assembly. However, the faint AGN sample has almost no overlap with the tadpole sample, which was predicted by recent hydrodynamical numerical simulations. This suggests that tadpole galaxies are early-stage mergers, which likely preceded the ``turn-on'' of the AGN component and the onset of visible point-source variability by >~1 Gyr.Comment: 9 pages, Latex2e requires 'elsart' and 'elsart3' (included), 10 postscript figures. To appear in the Proceedings of the Leiden Workshop on "QSO Host Galaxies: Evolution and Environment", eds. P.D. Barthel & D.B. Sanders (New Astron. Rev., 2006

    Strong field approximation within a Faddeev-like formalism for laser-matter interactions

    Get PDF
    We consider the interaction of atomic hydrogen with an intense laser field within the strong-field approximation. By using a Faddeev-like formalism, we introduce a new perturbative series in the binding potential of the atom. As a first test of this new approach, we calculate the electron energy spectrum in the very simple case of a photon energy higher than the ionisation potential. We show that by contrast to the standard perturbative series in the binding potential obtained within the strong field approximation, the first terms of the new series converge rapidly towards the results we get by solving the corresponding time-dependent Schroedinger equation.Comment: 7 pages, 1 figur
    corecore