822 research outputs found

    Tomography of full sawtooth crashes on the Tokamak Fusion Test Reactor

    Get PDF
    Full sawtooth crashes in high temperature plasmas have been investigated on the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 33, 1509 (1991)]. A strong asymmetry in the direction of major radius, a feature of the ballooning mode, and a remaining m=1 region after the crash have been observed with electron cyclotron emission image reconstructions. The TFTR data is not consistent with two-dimensional (2-D) models; it rather suggests a three-dimensional (3-D) localized reconnection arising on the bad curvature side. This process explains the phenomenon of fast heat transfer which keeps the condition q0<1

    Tomography of (2, 1) and (3, 2) magnetic island structures on Tokamak Fusion Test Reactor

    Get PDF
    High-resolution electron cyclotron emission (ECE) image reconstruction has been used to observe (m,n)=(2,1) and (3, 2) island structures on Tokamak Fusion Test Reactor [Plasma Phys. Controlled. Fusion 33, 1509 (1991)], where m and n are the poloidal and the toroidal mode number, respectively. The observed island structure is compared with other diagnostics, such as soft x-ray tomography and magnetic measurements. A cold elliptic island is observed after lithium pellet injection. Evidence for the enhancement of the heat transfer due to the island is observed. A relaxation phenomenon due to the m=2 mode is newly observed in Ohmic plasmas

    Anisotropic Superexchange for nearest and next nearest coppers in chain, ladder and lamellar cuprates

    Full text link
    We present a detailed calculation of the magnetic couplings between nearest-neighbor and next-nearest-neighbor coppers in the edge-sharing geometry, ubiquitous in many cuprates. In this geometry, the interaction between nearest neighbor coppers is mediated via two oxygens, and the Cu-O-Cu angle is close to 90 degrees. The derivation is based on a perturbation expansion of a general Hubbard Hamiltonian, and produces numerical estimates for the various magnetic energies. In particular we find the dependence of the anisotropy energies on the angular deviation away from the 90 degrees geometry of the Cu-O-Cu bonds. Our results are required for the correct analysis of the magnetic structure of various chain, ladder and lamellar cuprates.Comment: 13 pages, Latex, 7 figure

    Trapped two-component Fermi gases with up to six particles: Energetics, structural properties, and molecular condensate fraction

    Get PDF
    We investigate small equal-mass two-component Fermi gases under external spherically symmetric confinement in which atoms with opposite spins interact through a short-range two-body model potential. We employ a non-perturbative microscopic framework, the stochastic variational approach, and determine the system properties as functions of the interspecies s-wave scattering length a, the orbital angular momentum L of the system, and the numbers N1 and N2 of spin-up and spin-down atoms (with N1-N2 =0 or 1 and N < 7, where N=N1+N2). At unitarity, we determine the energies of the five- and six-particle systems for various ranges r0 of the underlying two-body model potential and extrapolate to the zero-range limit. These energies serve as benchmark results that can be used to validate and assess other numerical approaches. We also present structural properties such as the pair distribution function and the radial density. Furthermore, we analyze the one-body and two-body density matrices. A measure for the molecular condensate fraction is proposed and applied. Our calculations show explicitly that the natural orbitals and the momentum distributions of atomic Fermi gases approach those characteristic for a molecular Bose gas if the s-wave scattering length a, a>0, is sufficiently small.Comment: 21 pages, 15 figures; accepted for publication in special issue of CRA

    Magnetic Field Induced Spin Polarization of AlAs Two-dimensional Electrons

    Full text link
    Two-dimensional (2D) electrons in an in-plane magnetic field become fully spin polarized above a field B_P, which we can determine from the in-plane magnetoresistance. We perform such measurements in modulation-doped AlAs electron systems, and find that the field B_P increases approximately linearly with 2D electron density. These results imply that the product |g*|m*, where g* is the effective g-factor and m* the effective mass, is a constant essentially independent of density. While the deduced |g*|m* is enhanced relative to its band value by a factor of ~ 4, we see no indication of its divergence as 2D density approaches zero. These observations are at odds with results obtained in Si-MOSFETs, but qualitatively confirm spin polarization studies of 2D GaAs carriers.Comment: 4 pages, 5 figure

    The Dirac system on the Anti-de Sitter Universe

    Full text link
    We investigate the global solutions of the Dirac equation on the Anti-de-Sitter Universe. Since this space is not globally hyperbolic, the Cauchy problem is not, {\it a priori}, well-posed. Nevertheless we can prove that there exists unitary dynamics, but its uniqueness crucially depends on the ratio beween the mass MM of the field and the cosmological constant Λ>0\Lambda>0 : it appears a critical value, Λ/12\Lambda/12, which plays a role similar to the Breitenlohner-Freedman bound for the scalar fields. When M2Λ/12M^2\geq \Lambda/12 there exists a unique unitary dynamics. In opposite, for the light fermions satisfying M2<Λ/12M^2<\Lambda/12, we construct several asymptotic conditions at infinity, such that the problem becomes well-posed. In all the cases, the spectrum of the hamiltonian is discrete. We also prove a result of equipartition of the energy.Comment: 33 page
    corecore