11 research outputs found

    Mycobacterium tuberculosis Transmission between Cluster Members with Similar Fingerprint Patterns

    Get PDF
    Molecular epidemiologic studies provide evidence of transmission of Mycobacterium tuberculosis within clusters of patients whose isolates share identical IS6110-DNA fingerprint patterns. However, M. tuberculosis transmission among patients whose isolates have similar but not identical DNA fingerprint patterns (i.e., differing by a single band) has not been well documented. We used DNA fingerprinting, combined with conventional epidemiology, to show unsuspected patterns of tuberculosis transmission associated with three public bars in the same city. Among clustered TB cases, DNA fingerprinting analysis of isolates with similar and identical fingerprints helped us discover epidemiologic links missed during routine tuberculosis contact investigations

    Occupational risk of tuberculosis transmission in a low incidence area

    Get PDF
    BACKGROUND: To investigate the occupational risk of tuberculosis (TB) infection in a low-incidence setting, data from a prospective study of patients with culture-confirmed TB conducted in Hamburg, Germany, from 1997 to 2002 were evaluated. METHODS: M. tuberculosis isolates were genotyped by IS6110 RFLP analysis. Results of contact tracing and additional patient interviews were used for further epidemiological analyses. RESULTS: Out of 848 cases included in the cluster analysis, 286 (33.7%) were classified into 76 clusters comprising 2 to 39 patients. In total, two patients in the non-cluster and eight patients in the cluster group were health-care workers. Logistic regression analysis confirmed work in the health-care sector as the strongest predictor for clustering (OR 17.9). However, only two of the eight transmission links among the eight clusters involving health-care workers had been detected previously. Overall, conventional contact tracing performed before genotyping had identified only 26 (25.2%) of the 103 contact persons with the disease among the clustered cases whose transmission links were epidemiologically verified. CONCLUSION: Recent transmission was found to be strongly associated with health-care work in a setting with low incidence of TB. Conventional contact tracing alone was shown to be insufficient to discover recent transmission chains. The data presented also indicate the need for establishing improved TB control strategies in health-care settings

    Networks and tuberculosis: an undetected community outbreak involving public places

    No full text
    After decades of decline in developed countries, there was a resurgence of tuberculosis in the mid-1980s accompanied by increased recognition that this infectious disease has long remained a major public health problem at the global level. New methods from molecular biology, in particular DNA 'fingerprinting' (of Mycobacterium tuberculosis), made it clear that current transmission and recent infection (in contrast to reactivation of earlier, latent infection) were much more significant than previously believed. Studies of tuberculosis outbreaks using these new tools pointed to complex networks through which infection was spreading and highlighted the need for new approaches to outbreak investigation and disease control. In the study reported here a new approach - combining methods from molecular biology, epidemiology and network analysis - was used to examine an outbreak of tuberculosis in Houston, Texas. Initial investigation using conventional strategies revealed few contacts among 37 patients with identical (six-band) DNA (IS6110-based) fingerprints but subsequent research uncovered over 40 places (including many gay bars) to which patients in this outbreak could be linked. Network methods were used to reconstruct an outbreak network and to quantify the relative importance (here, 'betweenness' centrality) of different actors (persons and places) playing a role in the outbreak. The multidisciplinary work provides the basis for a new approach to outbreak investigation and disease control

    Transmission Dynamics and Molecular Characterization of Mycobacterium tuberculosis Isolates with Low Copy Numbers of IS6110

    No full text
    Population-based analysis of Mycobacterium tuberculosis transmission in Houston, Tex., over 5 years identified 377 patients infected with an isolate containing one to four copies of IS6110. The isolates were analyzed by spoligotyping and assigned to one of three major genetic groups based on nucleotide polymorphisms in codons katG 463 and gyrA 95. Prospectively obtained patient interviews were reviewed to assess epidemiologic links between apparently clustered patients. A total of 13 groups of isolates with the same IS6110 profile were identified, representing 326 of the 377 patients (86.5%; range 2 to 113 patients). In contrast, 28 groups of isolates containing 334 patients (88.6%) had the same spoligotype (range, 2 to 143 patients). Combination of IS6110 profile and spoligotype data identified 31 clusters with 300 patients (79.6%; range, 2 to 82 patients). All 377 isolates belonged to major genetic group 1 (77 patients) or genetic group 2 (300 patients); no major genetic group 3 isolates were identified. Among the 228 patients interviewed, 33 patients (14.5%) were directly linked to another patient in the same cluster. Possible epidemiologic links were also found among 11 patients. Moreover, many clusters consisted of individuals with the same ethnicity. In conclusion, we confirmed that IS6110 profiling and spoligotyping together provide enhanced molecular discrimination of M. tuberculosis isolates with low copy numbers of IS6110. Identification of epidemiologic links among some of the patients verified that the combination of these two methods reliably indexes tuberculosis transmission

    Networks and tuberculosis: an undetected community outbreak involving public places

    No full text
    After decades of decline in developed countries, there was a resurgence of tuberculosis in the mid-1980s accompanied by increased recognition that this infectious disease has long remained a major public health problem at the global level. New methods from molecular biology, in particular DNA 'fingerprinting' (of Mycobacterium tuberculosis), made it clear that current transmission and recent infection (in contrast to reactivation of earlier, latent infection) were much more significant than previously believed. Studies of tuberculosis outbreaks using these new tools pointed to complex networks through which infection was spreading and highlighted the need for new approaches to outbreak investigation and disease control. In the study reported here a new approach -- combining methods from molecular biology, epidemiology and network analysis -- was used to examine an outbreak of tuberculosis in Houston, Texas. Initial investigation using conventional strategies revealed few contacts among 37 patients with identical (six-band) DNA (IS6110-based) fingerprints but subsequent research uncovered over 40 places (including many gay bars) to which patients in this outbreak could be linked. Network methods were used to reconstruct an outbreak network and to quantify the relative importance (here, 'betweenness' centrality) of different actors (persons and places) playing a role in the outbreak. The multidisciplinary work provides the basis for a new approach to outbreak investigation and disease control.Mycobacterium tuberculosis DNA fingerprinting Outbreak investigation Network analysis Outbreak network Place-finding

    Automated High-Throughput Genotyping for Study of Global Epidemiology of Mycobacterium tuberculosis Based on Mycobacterial Interspersed Repetitive Units

    No full text
    Large-scale genotyping of Mycobacterium tuberculosis is especially challenging, as the current typing methods are labor-intensive and the results are difficult to compare among laboratories. Here, automated typing based on variable-number tandem repeats (VNTRs) of genetic elements named mycobacterial interspersed repetitive units (MIRUs) in 12 mammalian minisatellite-like loci of M. tuberculosis is presented. This system combines analysis of multiplex PCRs on a fluorescence-based DNA analyzer with computerized automation of the genotyping. Analysis of a blinded reference set of 90 strains from 38 countries (K. Kremer et al., J. Clin. Microbiol. 37:2607–2618, 1999) demonstrated that it is 100% reproducible, sensitive, and specific for M. tuberculosis complex isolates, a performance that has not been achieved by any other typing method tested in the same conditions. MIRU-VNTRs can be used for analysis of the global genetic diversity of M. tuberculosis complex strains at different levels of evolutionary divergence. To fully exploit the portability of this typing system, a website was set up for the analysis of M. tuberculosis MIRU-VNTR genotypes via the Internet. This opens the way for global epidemiological surveillance of tuberculosis and should lead to novel insights into the evolutionary and population genetics of this major pathogen

    Comparison of Variable Number Tandem Repeat and IS6110-Restriction Fragment Length Polymorphism Analyses for Discrimination of High- and Low-Copy-Number IS6110 Mycobacterium tuberculosis Isolates

    No full text
    The present study was designed to evaluate the use of variable number tandem repeat (VNTR) and IS6110-restriction fragment length polymorphism (RFLP) analyses in combination as a two-step strategy for discrimination (as measured by the Hunter-Gaston Discrimination Index [HGDI]) of both high- and low-copy-number IS6110 Mycobacterium tuberculosis isolates compared to IS6110-RFLP alone with an unselected collection of isolates. Individually, IS6110-RFLP fingerprinting produced six clusters that accounted for 69% of the low-copy-number IS6110 isolates (five clusters) and 5% of the high-copy-number IS6110 isolates (one cluster). A total of 39% of all the isolates were clustered (HGDI = 0.97). VNTR analysis generated a total of 35 different VNTR allele profile sets from 93 isolates (HGDI = 0.938). Combining IS6110-RFLP analysis with VNTR analysis reduced the overall percentage of clustered isolates to 29% (HGDI = 0.988) and discriminated a further 27% of low-copy-number isolates that would have been clustered by IS6110-RFLP alone. The use of VNTR analysis as an initial typing strategy facilitates further analysis by IS6110-RFLP, and more importantly, VNTR analysis subdivides some IS6110-RFLP-defined clusters containing low- and single-copy IS6110 isolates

    Identifying locations of recent TB transmission in rural Uganda: a multidisciplinary approach

    No full text
    OBJECTIVES: Targeting high TB transmission sites may offer a novel approach to TB prevention in sub-Saharan Africa. We sought to characterize TB transmission sites in a rural Ugandan township. METHODS: We recruited adults starting TB treatment in Tororo, Uganda over one year. 54 TB cases provided names of frequent contacts, sites of residence, health care, work and social activities, and two sputum samples. Mycobacterium tuberculosis (MTB) culture-positive specimens underwent spoligotyping to identify strains with shared genotypes. We visualized TB case social networks, and obtained, mapped and geo-coded global positioning system measures for every location that cases reported frequenting one month before treatment. Locations of spatial overlap among genotype-clustered cases were considered potential transmission sites. RESULTS: Six distinct genotypic clusters were identified involving 21/33(64%) MTB culture-positive, genotyped cases; none shared a home. Although 18/54(33%) TB cases shared social network ties, none of the genotype-clustered cases shared social ties. Using spatial analysis, we identified potential sites of within-cluster TB transmission for five of six genotypic clusters. All sites but one were health care and social venues, including sites of drinking, worship and marketplaces. Cases reported spending the largest proportion of pre-treatment person-time (22.4%) at drinking venues. CONCLUSIONS: Using molecular epidemiology, geospatial and social network data from adult TB cases identified at clinics, we quantified person-time spent at high-risk locations across a rural Ugandan community, and determined the most likely sites of recent TB transmission to be health care and social venues. These sites may not have been identified using contact investigation alone
    corecore