22 research outputs found

    Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome

    Get PDF
    SummaryChromosomes are the physical realization of genetic information and thus form the basis for its readout and propagation. Here we present a high-resolution chromosomal contact map derived from a modified genome-wide chromosome conformation capture approach applied to Drosophila embryonic nuclei. The data show that the entire genome is linearly partitioned into well-demarcated physical domains that overlap extensively with active and repressive epigenetic marks. Chromosomal contacts are hierarchically organized between domains. Global modeling of contact density and clustering of domains show that inactive domains are condensed and confined to their chromosomal territories, whereas active domains reach out of the territory to form remote intra- and interchromosomal contacts. Moreover, we systematically identify specific long-range intrachromosomal contacts between Polycomb-repressed domains. Together, these observations allow for quantitative prediction of the Drosophila chromosomal contact map, laying the foundation for detailed studies of chromosome structure and function in a genetically tractable system

    MolAxis: a server for identification of channels in macromolecules

    Get PDF
    MolAxis is a freely available, easy-to-use web server for identification of channels that connect buried cavities to the outside of macromolecules and for transmembrane (TM) channels in proteins. Biological channels are essential for physiological processes such as electrolyte and metabolite transport across membranes and enzyme catalysis, and can play a role in substrate specificity. Motivated by the importance of channel identification in macromolecules, we developed the MolAxis server. MolAxis implements state-of-the-art, accurate computational-geometry techniques that reduce the dimensions of the channel finding problem, rendering the algorithm extremely efficient. Given a protein or nucleic acid structure in the PDB format, the server outputs all possible channels that connect buried cavities to the outside of the protein or points to the main channel in TM proteins. For each channel, the gating residues and the narrowest radius termed ‘bottleneck’ are also given along with a full list of the lining residues and the channel surface in a 3D graphical representation. The users can manipulate advanced parameters and direct the channel search according to their needs. MolAxis is available as a web server or as a stand-alone program at http://bioinfo3d.cs.tau.ac.il/MolAxis

    MolAxis: a server for identification of channels in macromolecules

    Get PDF
    MolAxis is a freely available, easy-to-use web server for identification of channels that connect buried cavities to the outside of macromolecules and for transmembrane (TM) channels in proteins. Biological channels are essential for physiological processes such as electrolyte and metabolite transport across membranes and enzyme catalysis, and can play a role in substrate specificity. Motivated by the importance of channel identification in macromolecules, we developed the MolAxis server. MolAxis implements state-of-the-art, accurate computational-geometry techniques that reduce the dimensions of the channel finding problem, rendering the algorithm extremely efficient. Given a protein or nucleic acid structure in the PDB format, the server outputs all possible channels that connect buried cavities to the outside of the protein or points to the main channel in TM proteins. For each channel, the gating residues and the narrowest radius termed ‘bottleneck’ are also given along with a full list of the lining residues and the channel surface in a 3D graphical representation. The users can manipulate advanced parameters and direct the channel search according to their needs. MolAxis is available as a web server or as a stand-alone program at http://bioinfo3d.cs.tau.ac.il/MolAxis

    Single-cell Hi-C reveals cell-to-cell variability in chromosome structure.

    Get PDF
    Large-scale chromosome structure and spatial nuclear arrangement have been linked to control of gene expression and DNA replication and repair. Genomic techniques based on chromosome conformation capture (3C) assess contacts for millions of loci simultaneously, but do so by averaging chromosome conformations from millions of nuclei. Here we introduce single-cell Hi-C, combined with genome-wide statistical analysis and structural modelling of single-copy X chromosomes, to show that individual chromosomes maintain domain organization at the megabase scale, but show variable cell-to-cell chromosome structures at larger scales. Despite this structural stochasticity, localization of active gene domains to boundaries of chromosome territories is a hallmark of chromosomal conformation. Single-cell Hi-C data bridge current gaps between genomics and microscopy studies of chromosomes, demonstrating how modular organization underlies dynamic chromosome structure, and how this structure is probabilistically linked with genome activity patterns

    Cohesin-mediated interactions organize chromosomal domain architecture

    Get PDF
    To ensure proper gene regulation within constrained nuclear space, chromosomes facilitate access to transcribed regions, while compactly packaging all other information. Recent studies revealed that chromosomes are organized into megabase-scale domains that demarcate active and inactive genetic elements, suggesting that compartmentalization is important for genome function. Here, we show that very specific long-range interactions are anchored by cohesin/CTCF sites, but not cohesin-only or CTCF-only sites, to form a hierarchy of chromosomal loops. These loops demarcate topological domains and form intricate internal structures within them. Post-mitotic nuclei deficient for functional cohesin exhibit global architectural changes associated with loss of cohesin/CTCF contacts and relaxation of topological domains. Transcriptional analysis shows that this cohesin-dependent perturbation of domain organization leads to widespread gene deregulation of both cohesin-bound and non-bound genes. Our data thereby support a role for cohesin in the global organization of domain structure and suggest that domains function to stabilize the transcriptional programmes within them. Chromosomal compartmentalization has been recognized as important for genome function. High-resolution techniques such as Hi-C, ChIP- and 4C-seq offer novel insights into cohesin's dynamic role in shaping the nuclear architecture

    Comparative Analysis of DNA Replication Timing Reveals Conserved Large-Scale Chromosomal Architecture

    Get PDF
    Recent evidence suggests that the timing of DNA replication is coordinated across megabase-scale domains in metazoan genomes, yet the importance of this aspect of genome organization is unclear. Here we show that replication timing is remarkably conserved between human and mouse, uncovering large regions that may have been governed by similar replication dynamics since these species have diverged. This conservation is both tissue-specific and independent of the genomic G+C content conservation. Moreover, we show that time of replication is globally conserved despite numerous large-scale genome rearrangements. We systematically identify rearrangement fusion points and demonstrate that replication time can be locally diverged at these loci. Conversely, rearrangements are shown to be correlated with early replication and physical chromosomal proximity. These results suggest that large chromosomal domains of coordinated replication are shuffled by evolution while conserving the large-scale nuclear architecture of the genome

    Approximating the Pathway Axis and the Persistence Diagram of a Collection of Balls in 3-Space ∗

    No full text
    Given a collection B of balls in three-dimensional space, each having a radius of at least 1, we present an approximation scheme that constructs a collection Kε of unit balls that approximate B, such that the Hausdorff distance between ∪B and ∪Kε is at most ε. We define the pathway axis as the subset of the medial axis of the complement of ∪B for which the set of closest balls in B do not have a common intersection. It is the medial axis of the complement of ∪B without ‘dead-ends ’ and therefore it is a good starting point for finding pathways that lie outside ∪B. The recently introduced persistence diagram of the distance function from ∪B encodes topological characteristics of the function, giving a measure on the importance of topological features such as voids or tunnels during a uniform growth process of B. In this paper we introduce the pathway diagram as a useful subset of the Voronoi diagram of the centers of the unit balls in Kε, which can be easily and efficiently computed. We show that the pathway diagram contains an approximation of the pathway axis of B. We prove a bound on the ratio |Kε|/|B|, namely the ratio between the number of unit balls in Kε and the number of balls in B. We employ this bound to show how we efficiently approximate the persistence diagram of ∪B. Finally, we show that our approach is superior to the standard point-sample approaches for the two problems that we address in this paper: Approximating the medial axis of the complement of ∪B, and approximating the persistence diagram of ∪B. In a companion paper we introduce MolAxis, a tool for the identification of channels in macromolecules, that demonstrates how the pathway diagram and the persistence diagram are efficiently computed and used to accurately identify pathways in the complement of molecules modeled as the union of balls
    corecore