891 research outputs found

    Stacked Capsule Autoencoders

    Full text link
    Objects are composed of a set of geometrically organized parts. We introduce an unsupervised capsule autoencoder (SCAE), which explicitly uses geometric relationships between parts to reason about objects. Since these relationships do not depend on the viewpoint, our model is robust to viewpoint changes. SCAE consists of two stages. In the first stage, the model predicts presences and poses of part templates directly from the image and tries to reconstruct the image by appropriately arranging the templates. In the second stage, SCAE predicts parameters of a few object capsules, which are then used to reconstruct part poses. Inference in this model is amortized and performed by off-the-shelf neural encoders, unlike in previous capsule networks. We find that object capsule presences are highly informative of the object class, which leads to state-of-the-art results for unsupervised classification on SVHN (55%) and MNIST (98.7%). The code is available at https://github.com/google-research/google-research/tree/master/stacked_capsule_autoencodersComment: NeurIPS 2019; 14 pages, 7 figures, 4 tables, code is available at https://github.com/google-research/google-research/tree/master/stacked_capsule_autoencoder

    Acute lymphoblastic leukemia subsequent to temozolomide use in a 26-year-old man: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>We report the development of acute lymphoblastic leukemia in a patient in whom temozolomide was used for the treatment of a brain tumor. Unlike that of other alkylating agents, the leukemogenic potential of temozolomide is considered to be very low, and very rarely are such cases reported.</p> <p>Case Presentation</p> <p>A 26-year-old Pakistani man who was treated for glioblastoma with temozolomide in an adjuvant setting was diagnosed to have acute lymphoblastic leukemia one year after stopping temozolomide.</p> <p>Conclusion</p> <p>Temozolomide is a highly active agent, used in the management of high-grade brain neoplasms. The agent is generally regarded to be safe, with an acceptable safety profile. Very few cases of myelodysplasia associated with temozolomide use have been reported. We report here the first case of acute lymphoblastic leukemia, which developed in a young man about one year after he finished taking temozolomide. This should provide further insight into a possible toxicity profile of this alkylating agent. This finding should be of interest to physicians in general and to medical oncologists in particular.</p

    Lead exposure in adult males in urban Transvaal Province, South Africa during the apartheid era

    Get PDF
    Human exposure to lead is a substantial public health hazard worldwide and is particularly problematic in the Republic of South Africa given the country’s late cessation of leaded petrol. Lead exposure is associated with a number of serious health issues and diseases including developmental and cognitive deficiency, hypertension and heart disease. Understanding the distribution of lifetime lead burden within a given population is critical for reducing exposure rates. Femoral bone from 101 deceased adult males living in urban Transvaal Province (now Gauteng Province), South Africa between 1960 and 1998 were analyzed for lead concentration by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Of the 72 black and 29 white individuals sampled, chronic lead exposure was apparent in nearly all individuals. White males showed significantly higher median bone lead concentration (ME = 10.04 µg·g−1), than black males (ME = 3.80 µg·g−1) despite higher socioeconomic status. Bone lead concentration covaries significantly, though weakly, with individual age. There was no significant temporal trend in bone lead concentration. These results indicate that long-term low to moderate lead exposure is the historical norm among South African males. Unexpectedly, this research indicates that white males in the sample population were more highly exposed to lead

    Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study

    Get PDF
    BACKGROUND: Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. RESULTS: The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. CONCLUSIONS: Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens

    Synthesis, Electrical Measurement, and Field Emission Properties of Îą-Fe2O3Nanowires

    Get PDF
    α-Fe2O3nanowires (NWs) were formed by the thermal oxidation of an iron film in air at 350 °C for 10 h. The rhombohedral structure of the α-Fe2O3NWs was grown vertically on the substrate with diameters of 8–25 nm and lengths of several hundred nm. It was found that the population density of the NWs per unit area (DNWs) can be varied by the film thickness. The thicker the iron film, the more NWs were grown. The growth mechanism of the NWs is suggested to be a combination effect of the thermal oxidation rate, defects on the film, and selective directional growth. The electrical resistivity of a single NW with a length of 800 nm and a diameter of 15 nm was measured to be 4.42 × 103 Ωcm using conductive atomic force microscopy. The field emission characteristics of the NWs were studied using a two-parallel-plate system. A low turn–on field of 3.3 V/μm and a large current density of 10−3 A/cm2(under an applied field of about 7 V/μm) can be obtained using optimal factors ofDNWsin the cathode

    Field Emission and Radial Distribution Function Studies of Fractal-like Amorphous Carbon Nanotips

    Get PDF
    The short-range order of individual fractal-like amorphous carbon nanotips was investigated by means of energy-filtered electron diffraction in a transmission electron microscope (TEM). The nanostructures were grown in porous silicon substrates in situ within the TEM by the electron beam-induced deposition method. The structure factorS(k) and the reduced radial distribution functionG(r) were calculated. From these calculations a bond angle of 124° was obtained which suggests a distorted graphitic structure. Field emission was obtained from individual nanostructures using two micromanipulators with sub-nanometer positioning resolution. A theoretical three-stage model that accounts for the geometry of the nanostructures provides a value for the field enhancement factor close to the one obtained experimentally from the Fowler-Nordheim law

    Weight change over five-year periods and number of components of the metabolic syndrome in a Dutch cohort

    Get PDF
    Overweight and obesity are associated with the metabolic syndrome (MetS). We studied the association of weight change over three consecutive 5-year periods with the number of MetS components in people aged 20–59 years. 5735 participants from the Doetinchem Cohort Study were included. Weight was measured in round 1 and at each 5-year interval follow-up (round 2, 3 and 4). Weight change was defined as the absolute weight change between two consecutive measurements. The number of MetS components (assessed in round 2, 3 and 4) was based on the presence of the following components of the MetS: central obesity, raised blood pressure, reduced high density lipoprotein cholesterol and elevated glucose. Associations of weight change and the number of components of the MetS were analyzed with Generalized Estimating Equations for Poisson regression, stratified for 10-year age groups. For each age group, 1 kg weight gain was positively associated with the number of components of the MetS, independent of sex and measurement round. The association was stronger in 30–39 years (adjusted rate ratio: 1.044; 95%CI: 1.040–1.049) and smaller in older age groups. Compared to stable weight (>−2.5 kg and < 2.5 kg), weight loss (≤−2.5 kg) and weight gain (≥2.5 kg) was associated with a lower and higher rate ratio respectively, for the number of components of the MetS. Our results support the independent association of weight change with the number of MetS components with a more pronounced association in younger people

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore