1,078 research outputs found

    Material-Specific Investigations of Correlated Electron Systems

    Full text link
    We present the results of numerical studies for selected materials with strongly correlated electrons using a combination of the local-density approximation and dynamical mean-field theory (DMFT). For the solution of the DMFT equations a continuous-time quantum Monte-Carlo algorithm was employed. All simulations were performed on the supercomputer HLRB II at the Leibniz Rechenzentrum in Munich. Specifically we have analyzed the pressure induced metal-insulator transitions in Fe2O3 and NiS2, the charge susceptibility of the fluctuating-valence elemental metal Yb, and the spectral properties of a covalent band-insulator model which includes local electronic correlations.Comment: 14 pages, 7 figures, to appear in "High Performance Computing in Science and Engineering, Garching 2009" (Springer

    Complete solutions to the metric of spherically collapsing dust in an expanding spacetime with a cosmological constant

    Get PDF
    We present semi-analytical solutions to the background equations describing the Lema\^itre-Tolman-Bondi (LTB) metric as well as the homogeneous Friedmann equations, in the presence of dust, curvature and a cosmological constant Lambda. For none of the presented solutions any numerical integration has to be performed. All presented solutions are given for expanding and collapsing phases, preserving continuity in time and radius. Hence, these solutions describe the complete space time of a collapsing spherical object in an expanding universe. In the appendix we present for completeness a solution of the Friedmann equations in the additional presence of radiation, only valid for the Robertson-Walker metric.Comment: 23 pages, one figure. Numerical module for evaluation of the solutions released at http://web.physik.rwth-aachen.de/download/valkenburg/ColLambda/ Matches published version, published under Open Access. Note change of titl

    Electronic localization at mesoscopic length scales: different definitions of localization and contact effects in a heuristic DNA model

    Full text link
    In this work we investigate the electronic transport along model DNA molecules using an effective tight-binding approach that includes the backbone on site energies. The localization length and participation number are examined as a function of system size, energy dependence, and the contact coupling between the leads and the DNA molecule. On one hand, the transition from an diffusive regime to a localized regime for short systems is identified, suggesting the necessity of a further length scale revealing the system borders sensibility. On the other hand, we show that the lenght localization and participation number, do not depended of system size and contact coupling in the thermodynamic limit. Finally we discuss possible length dependent origins for the large discrepancies among experimental results for the electronic transport in DNA sample

    Tight-binding parameters for charge transfer along DNA

    Full text link
    We systematically examine all the tight-binding parameters pertinent to charge transfer along DNA. The π\pi molecular structure of the four DNA bases (adenine, thymine, cytosine, and guanine) is investigated by using the linear combination of atomic orbitals method with a recently introduced parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are discussed and then used for calculating the corresponding wavefunctions of the two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO and LUMO energies of the bases are in good agreement with available experimental values. Our results are then used for estimating the complete set of charge transfer parameters between neighboring bases and also between successive base-pairs, considering all possible combinations between them, for both electrons and holes. The calculated microscopic quantities can be used in mesoscopic theoretical models of electron or hole transfer along the DNA double helix, as they provide the necessary parameters for a tight-binding phenomenological description based on the π\pi molecular overlap. We find that usually the hopping parameters for holes are higher in magnitude compared to the ones for electrons, which probably indicates that hole transport along DNA is more favorable than electron transport. Our findings are also compared with existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV

    Get PDF
    We report a measurement of the longitudinal double-spin asymmetry A_LL and the differential cross section for inclusive Pi0 production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. The cross section was measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T < 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of Pi0's in their parent jets was found to be around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC

    Measurement of the parity-violating longitudinal single-spin asymmetry for W±W^{\pm} boson production in polarized proton-proton collisions at s=500\sqrt{s} = 500 GeV

    Get PDF
    We report the first measurement of the parity violating single-spin asymmetries for midrapidity decay positrons and electrons from W+W^{+} and WW^{-} boson production in longitudinally polarized proton-proton collisions at s=500\sqrt{s}=500 GeV by the STAR experiment at RHIC. The measured asymmetries, ALW+=0.27±0.10  (stat.)±0.02  (syst.)±0.03  (norm.)A^{W^+}_{L}=-0.27\pm 0.10\;({\rm stat.})\pm 0.02\;({\rm syst.}) \pm 0.03\;({\rm norm.}) and ALW=0.14±0.19  (stat.)±0.02  (syst.)±0.01  (norm.)A^{W^-}_{L}=0.14\pm 0.19\;({\rm stat.})\pm 0.02 \;({\rm syst.})\pm 0.01\;({\rm norm.}), are consistent with theory predictions, which are large and of opposite sign. These predictions are based on polarized quark and antiquark distribution functions constrained by polarized DIS measurements.Comment: 6 pages, 4 figures, submitted to Physics Review Letter

    Partonic flow and ϕ\phi-meson production in Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the ϕ\phi-meson elliptic flow (v2(pT)v_{2}(p_{T})) and high statistics pTp_{T} distributions for different centralities from sNN\sqrt{s_{NN}} = 200 GeV Au+Au collisions at RHIC. In minimum bias collisions the v2v_{2} of the ϕ\phi meson is consistent with the trend observed for mesons. The ratio of the yields of the Ω\Omega to those of the ϕ\phi as a function of transverse momentum is consistent with a model based on the recombination of thermal ss quarks up to pT4p_{T}\sim 4 GeV/cc, but disagrees at higher momenta. The nuclear modification factor (RCPR_{CP}) of ϕ\phi follows the trend observed in the KS0K^{0}_{S} mesons rather than in Λ\Lambda baryons, supporting baryon-meson scaling. Since ϕ\phi-mesons are made via coalescence of seemingly thermalized ss quarks in central Au+Au collisions, the observations imply hot and dense matter with partonic collectivity has been formed at RHIC.Comment: 6 pages, 4 figures, submit to PR

    Plasma Wakefield Acceleration with a Modulated Proton Bunch

    Get PDF
    The plasma wakefield amplitudes which could be achieved via the modulation of a long proton bunch are investigated. We find that in the limit of long bunches compared to the plasma wavelength, the strength of the accelerating fields is directly proportional to the number of particles in the drive bunch and inversely proportional to the square of the transverse bunch size. The scaling laws were tested and verified in detailed simulations using parameters of existing proton accelerators, and large electric fields were achieved, reaching 1 GV/m for LHC bunches. Energy gains for test electrons beyond 6 TeV were found in this case.Comment: 9 pages, 7 figure
    corecore