127 research outputs found

    A Measurement of Psi(2S) Resonance Parameters

    Full text link
    Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been measured in the vicinity of the Psi(2S) resonance using the BESII detector operated at the BEPC. The Psi(2S) total width; partial widths to hadrons, pi+pi- J/Psi, muons; and corresponding branching fractions have been determined to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)= (2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)= (97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%, respectively.Comment: 8 pages, 6 figure

    Measurements of the Mass and Full-Width of the ηc\eta_c Meson

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/Ïˆâ†’ÎłÎ·c\psi\to\gamma\eta_c is observed in five different decay channels: ÎłK+K−π+π−\gamma K^+K^-\pi^+\pi^-, ÎłÏ€+π−π+π−\gamma\pi^+\pi^-\pi^+\pi^-, ÎłK±KS0π∓\gamma K^\pm K^0_S \pi^\mp (with KS0→π+π−K^0_S\to\pi^+\pi^-), ÎłÏ•Ï•\gamma \phi\phi (with ϕ→K+K−\phi\to K^+K^-) and Îłppˉ\gamma p\bar{p}. From a combined fit of all five channels, we determine the mass and full-width of ηc\eta_c to be mηc=2977.5±1.0(stat.)±1.2(syst.)m_{\eta_c}=2977.5\pm1.0 ({stat.})\pm1.2 ({syst.}) MeV/c2c^2 and Γηc=17.0±3.7(stat.)±7.4(syst.)\Gamma_{\eta_c} = 17.0\pm3.7 ({stat.})\pm7.4 ({syst.}) MeV/c2c^2.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.

    Partial Wave Analysis of J/Ïˆâ†’Îł(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-)

    Full text link
    BES data on J/Ïˆâ†’Îł(K+K−π+π−)J/\psi \to \gamma (K^+K^-\pi^+\pi^-) are presented. The K∗Kˉ∗K^*\bar K^* contribution peaks strongly near threshold. It is fitted with a broad 0−+0^{-+} resonance with mass M=1800±100M = 1800 \pm 100 MeV, width Γ=500±200\Gamma = 500 \pm 200 MeV. A broad 2++2^{++} resonance peaking at 2020 MeV is also required with width ∌500\sim 500 MeV. There is further evidence for a 2−+2^{-+} component peaking at 2.55 GeV. The non-K∗Kˉ∗K^*\bar K^* contribution is close to phase space; it peaks at 2.6 GeV and is very different from K∗K∗ˉK^{*}\bar{K^{*}}.Comment: 15 pages, 6 figures, 1 table, Submitted to PL

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Measurement of Branching Ratios for ηc\eta_c Hadronic Decays

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/Ïˆâ†’ÎłÎ·c\psi\to\gamma\eta_c is observed in five decay channels: ηc→K+K−π+π−\eta_c \to K^+K^-\pi^+\pi^-, π+π−π+π−\pi^+\pi^-\pi^+\pi^-, K±KS0π∓K^\pm K^0_S \pi^\mp (with KS0→π+π−K^0_S\to\pi^+\pi^-), ϕϕ\phi\phi (with ϕ→K+K−\phi\to K^+K^-) and ppˉp\bar{p}. From these signals, we determine Br(J/Ïˆâ†’ÎłÎ·c)×Br(ηc→K+K−π+π−)Br(J/\psi\to\gamma\eta_c)\times Br(\eta_c\to K^+K^-\pi^+\pi^-) =(1.5±0.2±0.2)×10−4=(1.5\pm0.2\pm0.2)\times10^{-4}, Br(J/Ïˆâ†’ÎłÎ·c)×Br(ηc→π+π−π+π−)Br(J/\psi\to\gamma\eta_c)\times Br(\eta_c\to \pi^+\pi^-\pi^+\pi^-) =(1.3±0.2±0.4)×10−4=(1.3\pm0.2\pm0.4)\times10^{-4}, Br(J/Ïˆâ†’ÎłÎ·c)×Br(ηc→K±KS0π∓)Br(J/\psi\to\gamma\eta_c)\times Br(\eta_c\to K^\pm K_{S}^{0}\pi^\mp) =(2.2±0.3±0.5)×10−4=(2.2\pm0.3\pm0.5)\times10^{-4}, Br(J/Ïˆâ†’ÎłÎ·c)×Br(ηc→ϕϕ)Br(J/\psi\to\gamma\eta_c)\times Br(\eta_c\to \phi\phi) =(3.3±0.6±0.6)×10−5=(3.3\pm0.6\pm0.6)\times10^{-5} and Br(J/Ïˆâ†’ÎłÎ·c)×Br(ηc→ppˉ)Br(J/\psi\to\gamma\eta_c)\times Br(\eta_c\to p\bar{p}) =(1.9±0.3±0.3)×10−5=(1.9\pm0.3\pm0.3)\times10^{-5}.Comment: 8 pages, 1 figures and 4 table. Submitted to Phys. Lett.

    Evidence of psi(3770) non-DD-bar Decay to J/psi pi+pi-

    Full text link
    Evidence of ψ(3770)\psi(3770) decays to a non-DDˉ{D \bar D} final state is observed. A total of 11.8±4.8±1.311.8 \pm 4.8 \pm 1.3 \psi(3770) \to \PPJP events are obtained from a data sample of 27.7 pb−1\rm {pb^{-1}} taken at center-of-mass energies around 3.773 GeV using the BES-II detector at the BEPC. The branching fraction is determined to be BF(\psi(3770) \to \PPJP)=(0.34\pm 0.14 \pm 0.09)%, corresponding to the partial width of \Gamma(\psi(3770) \to \PPJP) = (80 \pm 33 \pm 23) keV.Comment: 8 pages, 7 figures, Submitted to Physics Letters
    • 

    corecore