809 research outputs found
The Influence of Molecular Adsorption on Elongating Gold Nanowires
Using molecular dynamics simulations, we study the impact of physisorbing
adsorbates on the structural and mechanical evolution of gold nanowires (AuNWs)
undergoing elongation. We used various adsorbate models in our simulations,
with each model giving rise to a different surface coverage and mobility of the
adsorbed phase. We find that the local structure and mobility of the adsorbed
phase remains relatively uniform across all segments of an elongating AuNW,
except for the thinning region of the wire where the high mobility of Au atoms
disrupts the monolayer structure, giving rise to higher solvent mobility. We
analyzed the AuNW trajectories by measuring the ductile elongation of the wires
and detecting the presence of characteristic structural motifs that appeared
during elongation. Our findings indicate that adsorbates facilitate the
formation of high-energy structural motifs and lead to significantly higher
ductile elongations. In particular, our simulations result in a large number of
monatomic chains and helical structures possessing mechanical stability in
excess of what we observe in vacuum. Conversely, we find that a molecular
species that interacts weakly (i.e., does not adsorb) with AuNWs worsens the
mechanical stability of monatomic chains.Comment: To appear in Journal of Physical Chemistry
Evidential Bagging: Combining Heterogeneous Classifiers in the Belief Functions Framework
International audienceIn machine learning, Ensemble Learning methodologies are known to improve predictive accuracy and robustness. They consist in the learning of many classifiers that produce outputs which are finally combined according to different techniques. Bagging, or Bootstrap Aggre-gating, is one of the most famous Ensemble methodologies and is usually applied to the same classification base algorithm, i.e. the same type of classifier is learnt multiple times on bootstrapped versions of the initial learning dataset. In this paper, we propose a bagging methodology that involves different types of classifier. Classifiers' probabilist outputs are used to build mass functions which are further combined within the belief functions framework. Three different ways of building mass functions are proposed; preliminary experiments on benchmark datasets showing the relevancy of the approach are presented
Electronic Structure Calculation by First Principles for Strongly Correlated Electron Systems
Recent trends of ab initio studies and progress in methodologies for
electronic structure calculations of strongly correlated electron systems are
discussed. The interest for developing efficient methods is motivated by recent
discoveries and characterizations of strongly correlated electron materials and
by requirements for understanding mechanisms of intriguing phenomena beyond a
single-particle picture. A three-stage scheme is developed as renormalized
multi-scale solvers (RMS) utilizing the hierarchical electronic structure in
the energy space. It provides us with an ab initio downfolding of the global
band structure into low-energy effective models followed by low-energy solvers
for the models. The RMS method is illustrated with examples of several
materials. In particular, we overview cases such as dynamics of semiconductors,
transition metals and its compounds including iron-based superconductors and
perovskite oxides, as well as organic conductors of kappa-ET type.Comment: 44 pages including 38 figures, to appear in J. Phys. Soc. Jpn. as an
invited review pape
Magnetic fields in cosmic particle acceleration sources
We review here some magnetic phenomena in astrophysical particle accelerators
associated with collisionless shocks in supernova remnants, radio galaxies and
clusters of galaxies. A specific feature is that the accelerated particles can
play an important role in magnetic field evolution in the objects. We discuss a
number of CR-driven, magnetic field amplification processes that are likely to
operate when diffusive shock acceleration (DSA) becomes efficient and
nonlinear. The turbulent magnetic fields produced by these processes determine
the maximum energies of accelerated particles and result in specific features
in the observed photon radiation of the sources. Equally important, magnetic
field amplification by the CR currents and pressure anisotropies may affect the
shocked gas temperatures and compression, both in the shock precursor and in
the downstream flow, if the shock is an efficient CR accelerator. Strong
fluctuations of the magnetic field on scales above the radiation formation
length in the shock vicinity result in intermittent structures observable in
synchrotron emission images. Resonant and non-resonant CR streaming
instabilities in the shock precursor can generate mesoscale magnetic fields
with scale-sizes comparable to supernova remnants and even superbubbles. This
opens the possibility that magnetic fields in the earliest galaxies were
produced by the first generation Population III supernova remnants and by
clustered supernovae in star forming regions.Comment: 30 pages, Space Science Review
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
The Herschel Multi-tiered Extragalactic Survey: HerMES
The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program
designed to map a set of nested fields totalling ~380 deg^2. Fields range in
size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 \mu m),
and Herschel-PACS (at 100 and 160 \mu m), with an additional wider component of
270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted
thermal spectral energy distribution from interstellar dust and thus capture
the re-processed optical and ultra-violet radiation from star formation that
has been absorbed by dust, and are critical for forming a complete
multi-wavelength understanding of galaxy formation and evolution.
The survey will detect of order 100,000 galaxies at 5\sigma in some of the
best studied fields in the sky. Additionally, HerMES is closely coordinated
with the PACS Evolutionary Probe survey. Making maximum use of the full
spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to:
facilitate redshift determination; rapidly identify unusual objects; and
understand the relationships between thermal emission from dust and other
processes. Scientific questions HerMES will be used to answer include: the
total infrared emission of galaxies; the evolution of the luminosity function;
the clustering properties of dusty galaxies; and the properties of populations
of galaxies which lie below the confusion limit through lensing and statistical
techniques.
This paper defines the survey observations and data products, outlines the
primary scientific goals of the HerMES team, and reviews some of the early
results.Comment: 23 pages, 17 figures, 9 Tables, MNRAS accepte
Defect symmetry influence on electronic transport of zigzag nanoribbons
The electronic transport of zigzag-edged graphene nanoribbon (ZGNR) with local Stone-Wales (SW) defects is systematically investigated by first principles calculations. While both symmetric and asymmetric SW defects give rise to complete electron backscattering region, the well-defined parity of the wave functions in symmetric SW defects configuration is preserved. Its signs are changed for the highest-occupied electronic states, leading to the absence of the first conducting plateau. The wave function of asymmetric SW configuration is very similar to that of the pristine GNR, except for the defective regions. Unexpectedly, calculations predict that the asymmetric SW defects are more favorable to electronic transport than the symmetric defects configuration. These distinct transport behaviors are caused by the different couplings between the conducting subbands influenced by wave function alterations around the charge neutrality point
Chemical and structural changes of pretreated empty fruit bunch (EFB) in ionic liquid-cellulase compatible system for fermentability to bioethanol
The pretreatment of empty fruit bunch (EFB) was conducted using an integrated system of IL and cellulases (IL-E), with simultaneous fermentation in one vessel. The cellulase mixture (PKC-Cel) was derived from Trichoderma reesei by solid-state fermentation. Choline acetate [Cho]OAc was utilized for the pretreatment due to its biocompatibility and biodegradability. The treated EFB and its hydrolysate were characterized by the Fourier transform infrared spectroscopy, scanning electron microscopy, and chemical analysis. The results showed that there were significant structural changes in EFB after the treatment in IL-E system. The sugar yield after enzymatic hydrolysis by the PKC-Cel was increased from 0.058 g/g of EFB in the crude sample (untreated) to 0.283 and 0.62 ± 06 g/g in IL-E system after 24 and 48 h of treatment, respectively. The EFB hydrolysate showed the eligibility for ethanol production without any supplements where ethanol yield was 0.275 g ethanol/g EFB in the presence of the IL, while lower yield obtained without IL-pretreatment. Moreover, it was demonstrated that furfural and phenolic compounds were not at the level of suppressing the fermentation process
- …