278 research outputs found

    Revision of empirical electric field modeling in the inner magnetosphere using Cluster data

    Get PDF
    Using Cluster data from the Electron Drift (EDI) and the Electric Field and Wave (EFW) instruments, we revise our empirically-based, inner-magnetospheric electric field (UNH-IMEF) model at 22.662 mV/m; K-p\u3c1, 1K(p)\u3c2, 2K(p)\u3c3, 3K(p)\u3c4, 4K(p)\u3c5, and K(p)4(+). Patterns consist of one set of data and processing for smaller activities, and another for higher activities. As activity increases, the skewed potential contour related to the partial ring current appears on the nightside. With the revised analysis, we find that the skewed potential contours get clearer and potential contours get denser on the nightside and morningside. Since the fluctuating components are not negligible, standard deviations from the modeled values are included in the model. In this study, we perform validation of the derived model more extensively. We find experimentally that the skewed contours are located close to the last closed equipotential, consistent with previous theories. This gives physical context to our model and serves as one validation effort. As another validation effort, the derived results are compared with other models/measurements. From these comparisons, we conclude that our model has some clear advantages over the others

    Electron Power-Law Spectra in Solar and Space Plasmas

    Full text link
    Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated electrons often exhibit a power law, it remains unclear how electrons are accelerated to high energies and what processes determine the power-law index δ\delta. Here, we review previous observations of the power-law index δ\delta in a variety of different plasma environments with a particular focus on sub-relativistic electrons. It appears that in regions more closely related to magnetic reconnection (such as the `above-the-looptop' solar hard X-ray source and the plasma sheet in Earth's magnetotail), the spectra are typically soft (δ\delta \gtrsim 4). This is in contrast to the typically hard spectra (δ\delta \lesssim 4) that are observed in coincidence with shocks. The difference implies that shocks are more efficient in producing a larger non-thermal fraction of electron energies when compared to magnetic reconnection. A caveat is that during active times in Earth's magnetotail, δ\delta values seem spatially uniform in the plasma sheet, while power-law distributions still exist even in quiet times. The role of magnetotail reconnection in the electron power-law formation could therefore be confounded with these background conditions. Because different regions have been studied with different instrumentations and methodologies, we point out a need for more systematic and coordinated studies of power-law distributions for a better understanding of possible scaling laws in particle acceleration as well as their universality.Comment: 67 pages, 15 figures; submitted to Space Science Reviews; comments welcom

    Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath

    Get PDF
    Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The MMS mission provides the first serious opportunity to check if small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures where ions are demagnetized. Within the selected structure we see signatures of ion demagnetization, electron jets, electron heating and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales

    Experimental study of nonlinear interaction of plasma flow with charged thin current sheets: 1. Boundary structure and motion

    Get PDF
    We study plasma transport at a thin magnetopause (MP), described hereafter as a thin current sheet (TCS), observed by Cluster at the southern cusp on 13 February 2001 around 20:01 UT. The Cluster observations generally agree with the predictions of the Gas Dynamic Convection Field (GDCF) model in the magnetosheath (MSH) up to the MSH boundary layer, where significant differences are seen. We find for the MP a normal roughly along the GSE x-axis, which implies a clear departure from the local average MP normal, a ~90 km thickness and an outward speed of 35 km/s. Two populations are identified in the MSH boundary layer: the first one roughly perpendicular to the MSH magnetic field, which we interpret as the &quot;incident&quot; MSH plasma, the second one mostly parallel to <b>B</b>. Just after the MP crossing a velocity jet is observed with a peak speed of 240 km/s, perpendicular to <b>B</b>, with <i>M<sub>A</sub></i>=3 and &beta;>10 (peak value 23). The magnetic field clock angle rotates by 70&deg; across the MP. <i>E<sub>x</sub></i> is the main electric field component on both sides of the MP, displaying a bipolar signature, positive on the MSH side and negative on the opposite side, corresponding to a ~300 V electric potential jump across the TCS. The <i>E</i>&times;<i>B</i> velocity generally coincides with the perpendicular velocity measured by CIS; however, in the speed jet a difference between the two is observed, which suggests the need for an extra flow source. We propose that the MP TCS can act locally as an obstacle for low-energy ions (&lt;350 eV), being transparent for ions with larger gyroradius. As a result, the penetration of plasma by finite gyroradius is considered as a possible source for the jet. The role of reconnection is briefly discussed. The electrodynamics of the TCS along with mass and momentum transfer across it are further discussed in the companion paper by Savin et al. (2006)

    Ion Acceleration Efficiency at the Earth's Bow Shock : Observations and Simulation Results

    Get PDF
    Collisionless shocks are some of the most efficient particle accelerators in heliospheric and astrophysical plasmas. Here we study and quantify ion acceleration at Earth's bow shock with observations from NASA's Magnetospheric Multiscale (MMS) satellites and in a global hybrid-Vlasov simulation. From the MMS observations, we find that quasiparallel shocks are more efficient at accelerating ions. There, up to 15% of the available energy goes into accelerating ions above 10 times their initial energy. Above a shock-normal angle of similar to 50 degrees, essentially no energetic ions are observed downstream of the shock. We find that ion acceleration efficiency is significantly lower when the shock has a low Mach number (M ( A ) < 6) while there is little Mach number dependence for higher values. We also find that ion acceleration is lower on the flanks of the bow shock than at the subsolar point regardless of the Mach number. The observations show that a higher connection time of an upstream field line leads to somewhat higher acceleration efficiency. To complement the observations, we perform a global hybrid-Vlasov simulation with realistic solar-wind parameters with the shape and size of the bow shock. We find that the ion acceleration efficiency in the simulation shows good quantitative agreement with the MMS observations. With the combined approach of direct spacecraft observations, we quantify ion acceleration in a wide range of shock angles and Mach numbers.Peer reviewe

    First-year ion-acoustic wave observations in the solar wind by the RPW/TDS instrument on board Solar Orbiter

    Get PDF
    Context. Electric field measurements of the Time Domain Sampler (TDS) receiver, part of the Radio and Plasma Waves (RPW) instrument on board Solar Orbiter, often exhibit very intense broadband wave emissions at frequencies below 20 kHz in the spacecraft frame. During the first year of the mission, the RPW/TDS instrument was operating from the first perihelion in mid-June 2020 and through the first flyby of Venus in late December 2020. Aims. In this paper, we present a year-long study of electrostatic fluctuations observed in the solar wind at an interval of heliocentric distances from 0.5 to 1 AU. The RPW/TDS observations provide a nearly continuous data set for a statistical study of intense waves below the local plasma frequency. Methods. The on-board and continuously collected and processed properties of waveform snapshots allow for the mapping plasma waves at frequencies between 200 Hz and 20 kHz. We used the triggered waveform snapshots and a Doppler-shifted solution of the dispersion relation for wave mode identification in order to carry out a detailed spectral and polarization analysis. Results. Electrostatic ion-acoustic waves are the most common wave emissions observed between the local electron and proton plasma frequency by the TDS receiver during the first year of the mission. The occurrence rate of ion-acoustic waves peaks around perihelion at distances of 0.5 AU and decreases with increasing distances, with only a few waves detected per day at 0.9 AU. Waves are more likely to be observed when the local proton moments and magnetic field are highly variable. A more detailed analysis of more than 10000 triggered waveform snapshots shows the mean wave frequency at about 3 kHz and wave amplitude about 2.5 mV/m. The wave amplitude varies as R−1.38 with the heliocentric distance. The relative phase distribution between two components of the E-field projected in the Y-Z Spacecraft Reference Frame (SRF) plane shows a mostly linear wave polarization. Electric field fluctuations are closely aligned with the directions of the ambient field lines. Only a small number (3%) of ion-acoustic waves are observed at larger magnetic discontinuities

    Electron Signatures of Reconnection in a Global eVlasiator Simulation

    Get PDF
    Geospace plasma simulations have progressed toward more realistic descriptions of the solar wind-magnetosphere interaction from magnetohydrodynamic to hybrid ion-kinetic, such as the state-of-the-art Vlasiator model. Despite computational advances, electron scales have been out of reach in a global setting. eVlasiator, a novel Vlasiator submodule, shows for the first time how electromagnetic fields driven by global hybrid-ion kinetics influence electrons, resulting in kinetic signatures. We analyze simulated electron distributions associated with reconnection sites and compare them with Magnetospheric Multiscale (MMS) spacecraft observations. Comparison with MMS shows that key electron features, such as reconnection inflows, heated outflows, flat-top distributions, and bidirectional streaming, are in remarkable agreement. Thus, we show that many reconnection-related features can be reproduced despite strongly truncated electron physics and an ion-scale spatial resolution. Ion-scale dynamics and ion-driven magnetic fields are shown to be significantly responsible for the environment that produces electron dynamics observed by spacecraft in near-Earth plasmas.Peer reviewe

    Solar Wind—Magnetosphere Coupling During Radial Interplanetary Magnetic Field Conditions: Simultaneous Multi-Point Observations

    Get PDF
    S. Toledo-Redondo and J. Fornieles acknowledge support of the Ministry of Economy and Competitiveness (MINECO) of Spain (grant FIS2017-90102-R) and of Ministry of Science and Innovation (grant PID2020-112805GA-I00). Research at IRAP was supported by CNRS, CNES, and the University of Toulouse. We acknowledge support of the ISSI teams MMS and Cluster observations of magnetic reconnection and Cold plasma of ionospheric in the Earth's magnetosphere, and of the ESAC Science faculty.In-situ spacecraft missions are powerful assets to study processes that occur in space plasmas. One of their main limitations, however, is extrapolating such local measurements to the global scales of the system. To overcome this problem at least partially, multi-point measurements can be used. There are several multi-spacecraft missions currently operating in the Earth's magnetosphere, and the simultaneous use of the data collected by them provides new insights into the large-scale properties and evolution of magnetospheric plasma processes. In this work, we focus on studying the Earth's magnetopause (MP) using a conjunction between the Magnetospheric Multiscale and Cluster fleets, when both missions skimmed the MP for several hours at distant locations during radial interplanetary magnetic field (IMF) conditions. The observed MP positions as a function of the evolving solar wind conditions are compared to model predictions of the MP. We observe an inflation of the magnetosphere (similar to 0.7 R-E), consistent with magnetosheath pressure decrease during radial IMF conditions, which is less pronounced on the flank (<0.2 R-E). There is observational evidence of magnetic reconnection in the subsolar region for the whole encounter, and in the dusk flank for the last portion of the encounter, suggesting that reconnection was extending more than 15 R-E. However, reconnection jets were not always observed, suggesting that reconnection was patchy, intermittent or both. Shear flows reduce the reconnection rate up to similar to 30% in the dusk flank according to predictions, and the plasma beta enhancement in the magnetosheath during radial IMF favors reconnection suppression by the diamagnetic drift.Ministry of Economy and Competitiveness (MINECO) of Spain FIS2017-90102-RSpanish Government PID2020-112805GA-I00Centre National de la Recherche Scientifique (CNRS)European CommissionCentre National D'etudes SpatialesUniversity of ToulouseESAC Science facult
    corecore