573 research outputs found

    Removal of cells from body fluids by magnetic separation in batch and continuous mode: influence of bead size, concentration, and contact time

    Get PDF
    The magnetic separation of pathogenic compounds from body fluids is an appealing therapeutic concept. Recently, removal of a diverse array of pathogens has been demonstrated using extracorporeal dialysis-type devices. The contact time between the fluid and the magnetic beads in such devices is limited to a few minutes. This poses challenges, particularly if large compounds such as bacteria or cells need to be removed. Here, we report on the feasibility to remove cells from body fluids in a continuous dialysis type of setting. We assessed tumor cell removal efficiencies from physiological fluids with or without white blood cells using a range of different magnetic bead sizes (50–4000 nm), concentrations, and contact times. We show that tumor cells can be quantitatively removed from body fluids within acceptable times (1– 2 min) and bead concentrations (0.2 mg per mL). We further present a mathematical model to describe the minimal bead number concentration needed to remove a certain number of cells, in the presence of competing nonspecific uptake. The present study paves the way for investigational studies to assess the therapeutic potential of cell removal by magnetic blood purification in a dialysis-like setting

    Semiconductor-based Geometrical Quantum Gates

    Get PDF
    We propose an implementation scheme for holonomic, i.e., geometrical, quantum information processing based on semiconductor nanostructures. Our quantum hardware consists of coupled semiconductor macroatoms addressed/controlled by ultrafast multicolor laser-pulse sequences. More specifically, logical qubits are encoded in excitonic states with different spin polarizations and manipulated by adiabatic time-control of the laser amplitudes . The two-qubit gate is realized in a geometric fashion by exploiting dipole-dipole coupling between excitons in neighboring quantum dots.Comment: 4 Pages LaTeX, 3 Figures included. To appear in PRB (Rapid Comm.

    Interés legítimo en amparo. un instrumento procesal “Comunitarista”**Agradezco mucho la revisión crítica de este texto al profesor Rodolfo Vázquez Cardozo (ITAM).

    Get PDF
    ResumenParte importante de la interpretación constitucional se origina como producto del juicio de amparo; sin embargo, ello no implica que la Suprema Corte de Justicia de la Nación haya construido una teoría constitucional uniforme sobre los derechos y libertades. Este texto tiene tres propósitos: a) mostrar que el discurso justificatorio de la Corte sobre los derechos se ha elaborado a partir de un enfoque de justicia comunitarista o, en ocasiones, utilitarista; b) subrayar que la interpretación del interés legítimo en amparo sigue la misma suerte, y c) destacar que la incorporación de dicha herramienta procesal con un enfoque distinto puede proyectar la inclusión de una visión liberal igualitaria en la justicia constitucional.AbstractAn important part of the constitutional interpretation arises as a result of the trial of amparo, however this does not imply that the Supreme Court of Justice has built a uniform theory of constitutional rights and freedoms. This text has three purposes: (a) show that speech rights court only has foundation on communitarianism justice or utilitarianism, (b) emphasize that the interpretation of legitimate interest in amparo follows the same fate and (c) noted that the incorporation of that procedural tool in the new model of amparo, can include of an egalitarian liberal view on constitutional justice

    Holonomic quantum gates: A semiconductor-based implementation

    Get PDF
    We propose an implementation of holonomic (geometrical) quantum gates by means of semiconductor nanostructures. Our quantum hardware consists of semiconductor macroatoms driven by sequences of ultrafast laser pulses ({\it all optical control}). Our logical bits are Coulomb-correlated electron-hole pairs (excitons) in a four-level scheme selectively addressed by laser pulses with different polarization. A universal set of single and two-qubit gates is generated by adiabatic change of the Rabi frequencies of the lasers and by exploiting the dipole coupling between excitons.Comment: 10 Pages LaTeX, 10 Figures include

    Non-adiabatic geometrical quantum gates in semiconductor quantum dots

    Get PDF
    In this paper we study the implementation of non-adiabatic geometrical quantum gates with in semiconductor quantum dots. Different quantum information enconding/manipulation schemes exploiting excitonic degrees of freedom are discussed. By means of the Aharanov-Anandan geometrical phase one can avoid the limitations of adiabatic schemes relying on adiabatic Berry phase; fast geometrical quantum gates can be in principle implementedComment: 5 Pages LaTeX, 10 Figures include

    The Quest for Primordial Stellar Populations and the James Webb Space Telescope

    Full text link
    The NASA/ESA/CSA James Webb Space Telescope (JWST) will be the successor to the Hubble Space Telescope and may be launched as early as mid-2011. The key scientific goals for JWST are discovering and understanding the formation of the first stars and galaxies, the evolution of galaxies and the production of elements by stars, and the process of star and planet formation. Within this context, we discuss the expected properties of the first stellar generations in the Universe. We find that it is possible to discern truly primordial populations from the next generation of stars by measuring the metallicity of high-z star forming objects. The very low background of JWST will enable it to image and study first-light sources at very high redshifts, whereas its relatively small collecting area limits its capability in obtaining spectra of z~10--15 first-light sources to either the bright end of their luminosity function or to strongly lensed sources. With a suitable investment of observing time JWST will be able to detect individual Population III supernovae, thus identifying the very first stars that formed in the Universe.Comment: 12 pages, 9 figures (uses a number of CJAA style files to compile). Invited talk given at the Frascati Workshop 2003 "Multifrequency Behaviour of High Energy Cosmic Sources", eds. F. Giovannelli and Lola Sabau-Graziati; to appear in a special issue of the Chinese Journal of Astronomy & Astrophysic

    Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population

    Get PDF
    BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin

    FRA-1 protein overexpression is a feature of hyperplastic and neoplastic breast disorders

    Get PDF
    BACKGROUND: Fos-related antigen 1 (FRA-1) is an immediate early gene encoding a member of AP-1 family of transcription factors involved in cell proliferation, differentiation, apoptosis, and other biological processes. fra-1 gene overexpression has an important role in the process of cellular transformation, and our previous studies suggest FRA-1 protein detection as a useful tool for the diagnosis of thyroid neoplasias. Here we investigate the expression of the FRA-1 protein in benign and malignant breast tissues by immunohistochemistry, Western blot, RT-PCR and qPCR analysis, to evaluate its possible help in the diagnosis and prognosis of breast neoplastic diseases. METHODS: We investigate the expression of the FRA-1 protein in 70 breast carcinomas and 30 benign breast diseases by immunohistochemistry, Western blot, RT-PCR and qPCR analysis. RESULTS: FRA-1 protein was present in all of the carcinoma samples with an intense staining in the nucleus. Positive staining was also found in most of fibroadenomas, but in this case the staining was present both in the nucleus and cytoplasm, and the number of positive cells was lower than in carcinomas. Similar results were obtained from the analysis of breast hyperplasias, with no differences in FRA-1 expression level between typical and atypical breast lesions; however the FRA-1 protein localization is mainly nuclear in the atypical hyperplasias. In situ breast carcinomas showed a pattern of FRA-1 protein expression very similar to that observed in atypical hyperplasias. Conversely, no FRA-1 protein was detectable in 6 normal breast tissue samples used as controls. RT-PCR and qPCR analysis confirmed these results. Similar results were obtained analysing FRA-1 expression in fine needle aspiration biopsy (FNAB) samples. CONCLUSION: The data shown here suggest that FRA-1 expression, including its intracellular localization, may be considered a useful marker for hyperplastic and neoplastic proliferative breast disorders

    ATP Analogues for Structural Investigations: Case Studies of a DnaB Helicase and an ABC Transporter.

    Get PDF
    Nucleoside triphosphates (NTPs) are used as chemical energy source in a variety of cell systems. Structural snapshots along the NTP hydrolysis reaction coordinate are typically obtained by adding stable, nonhydrolyzable adenosine triphosphate (ATP) -analogues to the proteins, with the goal to arrest a state that mimics as closely as possible a physiologically relevant state, e.g., the pre-hydrolytic, transition and post-hydrolytic states. We here present the lessons learned on two distinct ATPases on the best use and unexpected pitfalls observed for different analogues. The proteins investigated are the bacterial DnaB helicase from Helicobacter pylori and the multidrug ATP binding cassette (ABC) transporter BmrA from Bacillus subtilis, both belonging to the same division of P-loop fold NTPases. We review the magnetic-resonance strategies which can be of use to probe the binding of the ATP-mimics, and present carbon-13, phosphorus-31, and vanadium-51 solid-state nuclear magnetic resonance (NMR) spectra of the proteins or the bound molecules to unravel conformational and dynamic changes upon binding of the ATP-mimics. Electron paramagnetic resonance (EPR), and in particular W-band electron-electron double resonance (ELDOR)-detected NMR, is of complementary use to assess binding of vanadate. We discuss which analogues best mimic the different hydrolysis states for the DnaB helicase and the ABC transporter BmrA. These might be relevant also to structural and functional studies of other NTPases
    corecore