Electronic Supporting Information

Removal of Cells from Body Fluids by Magnetic Separation in Batch and Continuous Mode: Influence of Bead Size, Concentration and Contact Time

Nils Bohmer ${ }^{1} \dagger$, Nino Demarmels ${ }^{1} \dagger$, Elena Tsolaki ${ }^{2}$, Lukas Gerken ${ }^{1}$, Kerda Keevend ${ }^{1}$, Sergio Bertazzo ${ }^{2}$, Marco Lattuada ${ }^{3}$, Inge K. Herrmann ${ }^{1 *}$
${ }^{1}$ Department Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland.
${ }^{2}$ Department of Medical Physics and Biomedical Engineering, University College London (UCL), Malet Place Engineering Building, London, WC1E 6BT, United Kingdom
${ }^{3}$ Department of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland.
\dagger contributed equally as first authors
*inge.herrmann@empa.ch

Figure S1: Particle size and polydispersity index (PDI). Hydrodynamic size of magnetic beads in water and cell culture medium measured by Dynamic Light Scattering (DLS).

Mathematical Model

Closed form solution of Equations (1-5)

In order to find the closed form solution of the equations, we can proceed as follows. The equations are first rendered dimensionless. The following dimensionless quantities are defined:
$\tau=\frac{2 k_{b} T}{3 \eta}\left(R_{C}+R_{M P}\right)\left(\frac{1}{R_{C}}+\frac{1}{R_{M P}}\right) N_{0} t$
$v=\frac{N}{N_{0}}$
$y_{i}=\frac{C_{i}}{N_{0}}$
The equations can be written in dimensionless form:
$\frac{d v}{d \tau}=-v \cdot \sum_{i=0}^{M-1}\left(1-\frac{i}{M}\right) \cdot y_{i}$
$\frac{d y_{0}}{d \tau}=-v \cdot y_{0}$
$\frac{d y_{i}}{d \tau}=\left(1-\frac{i-1}{M}\right) \cdot v \cdot y_{i-1}-\left(1-\frac{i}{M}\right) \cdot v \cdot y_{i}$
$\frac{d y_{M}}{d \tau}=\frac{1}{M} \cdot v \cdot y_{M-1}$
The initial conditions are:
$y_{0}(0)=\frac{C_{T}}{N_{0}}=r$
$y_{i}(0)=0$ for $1 \leq i \leq M$
$v(0)=1$
Using the conservation of particles and cells, we can rewrite the first equation as follows:
$\frac{d v}{d \tau}=-v \cdot\left(r-\frac{1}{M}(1-v)\right)$
This equation can be solved exactly, and the solution reads:
$v=\frac{\left(r-\frac{1}{M}\right) \exp \left(\left(\frac{1}{M}-r\right) \tau\right)}{r-\frac{1}{M} \exp \left(\left(\frac{1}{M}-r\right) \tau\right)}$
From this, the concentration of y_{0} as a function of time can be obtained:
$\frac{d y_{0}}{d \tau}=-\frac{\left(r-\frac{1}{M}\right) \exp \left(\left(\frac{1}{M}-r\right) \tau\right)}{r-\frac{1}{M} \exp \left(\left(\frac{1}{M}-r\right) \tau\right)} \cdot y_{0} \Rightarrow$
$y_{0}=r \cdot\left(\frac{r-\frac{1}{M} \exp \left(\left(\frac{1}{M}-r\right) \tau\right)}{r-\frac{1}{M}}\right)^{-M}$
To integrate the other equations, we start taking the ratio of all cell balance equations with the one for y_{0}. In this manner, the concentration of particles disappears. We have:
$\frac{d y_{1}}{d y_{0}}=-1+\left(1-\frac{1}{M}\right) \cdot \frac{y_{1}}{y_{0}}$
$\frac{d y_{i}}{d y_{0}}=-\left(1-\frac{i-1}{M}\right) \cdot \frac{y_{i-1}}{y_{0}}+\left(1-\frac{i}{M}\right) \cdot \frac{y_{i}}{y_{0}}$
$\frac{d y_{M}}{d \tau}=-\frac{1}{M} \cdot \frac{y_{M-1}}{y_{0}}$
The solution can be written in the following general form:
$y_{i}=\binom{M}{i} y_{0}^{1-\frac{i}{M}}\left(r^{\frac{1}{M}}-y_{0}^{\frac{1}{M}}\right)^{i}=\binom{M}{i} y_{0}\left(\left(\frac{r}{y_{0}}\right)^{\frac{1}{M}}-1\right)^{i}$
One can easily verify that this solution satisfies the mass balance on all cells:
$\sum_{i=0}^{M} y_{i}=\sum_{i=0}^{M}\binom{M}{i} y_{0}^{\frac{M-i}{M}}\left(r^{\frac{1}{M}}-y_{0}^{\frac{1}{M}}\right)^{i}=r$
The average number of particles per cell can be obtained as follows:
$\frac{d}{d r} \sum_{i=0}^{M} y_{i}=\sum_{i=0}^{M} \frac{i}{M}\binom{M}{i} y_{0}^{\frac{M-i}{M}}\left(r^{\frac{1}{M}}-y_{0}^{\frac{1}{M}}\right)^{i-1} r^{\frac{1}{M}-1}=1 \Rightarrow$
$\sum_{i=0}^{M} i \cdot y_{i}=\sum_{i=0}^{M} i\binom{M}{i} y_{0}^{\frac{M-i}{M}}\left(r^{\frac{1}{M}}-y_{0}^{\frac{1}{M}}\right)^{i}=M \cdot r^{1-\frac{1}{M}}\left(r^{\frac{1}{M}}-y_{0}^{\frac{1}{M}}\right) \Rightarrow$
$\langle i\rangle=\frac{\sum_{i=0}^{M} i \cdot y_{i}}{\sum_{i=0}^{M} y_{i}}=M \cdot\left(1-\left(\frac{y_{0}}{r}\right)^{\frac{1}{M}}\right)$

Finally, the final form of the solution is obtained by substituting Equation (1.6) into Equation (1.8)
$y_{i}=\binom{M}{i} r \cdot\left(\frac{r-\frac{1}{M} \exp \left(\left(\frac{1}{M}-r\right) \tau\right)}{r-\frac{1}{M}}\right)^{-M}\left(\frac{r-\frac{1}{M} \exp \left(\left(\frac{1}{M}-r\right) \tau\right)}{r-\frac{1}{M}}-1\right)^{i}$

Solution of Equations (7-9)

For the solution of Equations (7-9), we proceed in a similar manner. The following dimensionless quantities are defined:
$\tau=\frac{2 k_{b} T}{3 \eta}\left(R_{1, C}+R_{M P}\right)\left(\frac{1}{R_{1, C}}+\frac{1}{R_{M P}}\right) N_{0} t$
$v=\frac{N}{N_{0}}, y_{i}=\frac{C_{1, i}}{N_{0}}, z_{i}=\frac{C_{2, i}}{N_{0}}$
$\alpha=\frac{\left(R_{2, C}+R_{M P}\right)\left(\frac{1}{R_{2, C}}+\frac{1}{R_{M P}}\right)}{W\left(R_{1, C}+R_{M P}\right)\left(\frac{1}{R_{1, C}}+\frac{1}{R_{M P}}\right)}$
The equations can be written in dimensionless form:
$\frac{d v}{d \tau}=-v \cdot\left(\sum_{i=0}^{M_{1}-1}\left(1-\frac{i}{M_{1}}\right) \cdot y_{i}+\alpha \sum_{i=0}^{M_{2}-1}\left(1-\frac{i}{M_{2}}\right) \cdot z_{i}\right)$
$\frac{d y_{0}}{d \tau}=-v \cdot y_{0}$
$\frac{d y_{i}}{d \tau}=\left(1-\frac{i-1}{M_{1}}\right) \cdot v \cdot y_{i-1}-\left(1-\frac{i}{M_{1}}\right) \cdot v \cdot y_{i}$
$\frac{d y_{M_{1}}}{d \tau}=\frac{1}{M_{1}} \cdot v \cdot y_{M-1}$
$\frac{d z_{0}}{d \tau}=-\alpha \cdot v \cdot z_{0}$
$\frac{d z_{i}}{d \tau}=\alpha \cdot\left(1-\frac{i-1}{M_{2}}\right) \cdot v \cdot z_{i-1}-\alpha \cdot\left(1-\frac{i}{M_{2}}\right) \cdot v \cdot z_{i}$
$\frac{d z_{M_{2}}}{d \tau}=\frac{\alpha}{M_{2}} \cdot v \cdot z_{M-1}$

The initial conditions are:
$y_{0}(0)=r_{1}$
$y_{i}(0)=0$ for $1 \leq i \leq M_{1}$
$z_{0}(0)=r_{2}$
$z_{i}(0)=0$ for $1 \leq i \leq M_{2}$
$v(0)=1$
The magnetic particles concentration conditions can be written as:
$\sum_{i=1}^{M_{1}} i \cdot y_{i}+\sum_{i=1}^{M_{2}} i \cdot z_{i}+v=1$
The solution of the cell populations equations in terms of y_{0} and z_{0}, respectively, is:
$y_{i}=\binom{M_{1}}{i} y_{0}{ }^{1-\frac{i}{M_{1}}}\left(r_{1}^{\frac{1}{M_{1}}}-y_{0}^{\frac{1}{M_{1}}}\right)^{i}$
$z_{i}=\binom{M_{2}}{i} z_{0}^{1-\frac{i}{M_{2}}}\left(r_{2}^{\frac{1}{M_{2}}}-z_{0}^{\frac{1}{M_{2}}}\right)^{i}$
The balance equation of particles can be reformulated as:
$\frac{d v}{d \tau}=-v \cdot\left(r_{1}+\alpha \cdot r_{2}-r_{1}^{1-\frac{1}{M_{1}}}\left(r_{1}^{\frac{1}{M_{1}}}-y_{0}^{\frac{1}{M_{1}}}\right)-\alpha \cdot r_{2}^{1-\frac{1}{M_{2}}}\left(r^{\frac{1}{M_{2}}}-z_{0}^{\frac{1}{M_{2}}}\right)\right)$
A relationship between y_{0} and z_{0} can be easily obtained:
$\frac{d z_{0}}{d y_{0}}=\alpha \cdot \frac{z_{0}}{y_{0}} \Rightarrow \frac{z_{0}}{r_{2}}=\left(\frac{y_{0}}{r_{1}}\right)^{\alpha}$
Then, the equation for the particle concentration will be integrated as a function of y_{0} :
$\frac{d v}{d y_{0}}=\left(\frac{r_{1}}{y_{0}}+\alpha \cdot \frac{r_{2}}{y_{0}}-\frac{r_{1}^{1-\frac{1}{M_{1}}}}{y_{0}}\left(r_{1}^{\frac{1}{M_{1}}}-y_{0}^{\frac{1}{M_{1}}}\right)-\frac{\alpha \cdot r_{2}^{1-\frac{1}{M_{2}}}}{y_{0}}\left(r_{2}^{\frac{1}{M_{2}}}-r_{2}^{\frac{1}{M_{2}}}\left(\frac{y_{0}}{r_{1}}\right)^{\frac{\alpha}{M_{2}}}\right)\right) \Rightarrow$
$v=1+M_{1} \cdot r_{1}\left(\left(\frac{y_{0}}{r_{1}}\right)^{\frac{1}{M_{1}}}-1\right)+M_{2} \cdot r_{2}\left(\left(\frac{y_{0}}{r_{1}}\right)^{\frac{\alpha}{M_{2}}}-1\right)$
The only equation to be solved (numerically) is the following one, providing the concentration of cells without bound particles, as a function of time:

$$
\begin{align*}
& \frac{d y_{0}}{d \tau}=-v \cdot y_{0} \Rightarrow \\
& \frac{d y_{0}}{d \tau}=-y_{0} \cdot\left(1+M_{1} \cdot r_{1}\left(\left(\frac{y_{0}}{r_{1}}\right)^{\frac{1}{M_{1}}}-1\right)+M_{2} \cdot r_{2}\left(\left(\frac{y_{0}}{r_{1}}\right)^{\frac{\alpha}{M_{2}}}-1\right)\right) \tag{1.20}
\end{align*}
$$

This last equation can be solved numerically.

Figure S2: Mathematical modelling results for magnetic beads with a size of 300 nm . Unspecific binding was included through the parameter α. Two different ratios of specific versus unspecific cells were investigated: 0.2 and 10^{-5}. Total contact time: 10 minutes. Change in the fraction of cells with at least 10 magnetic particles as a function of α, for both specific and unspecific cells. Four particles number concentrations: (a) 5×10^{9} beads per mL . (b) 5×10^{8} beads per mL . (c) 5×10^{7} beads per mL . (d) 5×10^{6} beads per mL .

Figure S3: Mathematical modelling results for magnetic beads with a size of 300 nm. Unspecific binding was included through the parameter α. Two different ratios of specific versus unspecific cells were investigated: 0.2 and 10^{-5}. Particles number concentration 5×10^{6} beads per $m L$. (a) Change in the fraction of cells with at least 10 magnetic particles as a function of α, for both specific and unspecific cells, contact time 100 minutes. (b) Change in the fraction of cells with at least 10 magnetic particles as a function of α, for both specific and unspecific cells, contact time 1000 minutes. (c) Change in the concentration of magnetic particles as a function of α, for both specific and unspecific cells, contact time 100 minutes. (d) Change in the concentration of magnetic particles as a function of α, for both specific and unspecific cells, contact time 1000 minutes.

