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We propose an implementation of holonomic~geometrical! quantum gates by means of semiconductor
nanostructures. Our quantum hardware consists of semiconductor macroatoms driven by sequences of ultrafast
laser pulses~all optical control!. Our logical bits are Coulomb-correlated electron-hole pairs~excitons! in a
four-level scheme selectively addressed by laser pulses with different polarization. A universal set of single-
and two-qubit gates is generated by adiabatic change of the Rabi frequencies of the lasers and by exploiting the
dipole coupling between excitons

DOI: 10.1103/PhysRevA.67.062315 PACS number~s!: 03.67.Lx

I. INTRODUCTION

In the recent years, the interest about quantum computa-
tion ~QC! and quantum information processing~QIP! has
been considerably growing. Applications of QIP, e.g., quan-
tum cryptography and quantum teleportation, have been pro-
posed and verified experimentally. In QC, it has been shown
that quantum algorithms may speed up some classically in-
tractable problems in computer science@1#.

Unfortunately this power inherent to quantum features
~i.e., entanglement, state superposition! is difficult to be ex-
ploited because quantum states are typically highly unstable,
i.e., the undesired coupling with the many degrees of free-
dom of the environment may lead to decoherence and to the
loss of the information encoded. Another source of error can
be the imperfect control of parameters driving the evolution
of the system. This can lead to wrong output states. To
implement effective QIP techniques, these two problems
must be faced and solved.

For the problem of decoherence, some methods have been
proposed theoretically, for e.g., via error correcting codes@2#
it is possible to find errors induced by the environment and
correct them. Other approaches propose to encode informa-
tion in states that are stable against environmental noise@3#,
or to eliminate dynamically the noise effects~@4,5#!. A few
quantum hardwares have been proposed for the implementa-
tion of quantum gates; e.g., nuclear magnetic resonance@6#,
ion traps@7–10# semiconductor quantum dots~or macroat-
oms! ~@11–13#!; in each of these implementations we have
different gates and different ways of processing information.

A conceptually novel approach istopological computation
~@14,15#! in which the gate parameters depend only on the
global features of the control process, being therefore insen-
sitive to the local fluctuations. Though interesting the topo-
logical gates proposed so far are quite difficult to realize in
practice because they are based on nonlocal quantum states
of many-body systems with complex interactions.

Another approach that has some of the global~geometri-
cal! features of the quantum gates and seems closer to the
present experimental technology is the the so-calledholo-

nomic quantum computation~HQC! ~@16,17#!. In this paper,
we shall analyze in a detalied manner a recent proposal for
HQC with semiconductor quantum dots@18#.

We shall start by recalling the basic facts about HQC
~Sec. II! and the excitonic transitions in semiconductor mac-
roatoms~Sec. III!. In Sec. IV, we will show how to encode
quantum information in excitonic state and how to realize
single-qubit gates by means of laser pulses. The two-qubit
gates resorting to a biexcitonic shift are illustated in Sec. V.
Section VI contains the conclusions, and Appendixes are
added to improve the self-consistency of the paper.

II. QUANTUM HOLONOMIES

When a quantum state undergoes an adiabatic cyclic evo-
lution, a nontrivial phase factor appears. This is calledgeo-
metrical phasebecause it only depends on the global prop-
erties, i.e, not on the path in the parameter space but only on
the swept solid angle. If the evolving state is nondegenerate,
we have only an Abelian phase~Berry phase@19#!, but if it is
degenerate we have a non-Abelian operator. Then we can use
it to process the quantum information encoded in the state.

More precisely, if we have a familyF of isodegenerate
HamiltoniansH(l) depending onm dynamically control-
lable parametersl, we encode the information in an-fold
degenerate eigenspaceE of a HamiltonianH(l0). Changing
l ’s and drivingH(l) along a loop, we produce a nontrivial
transformation of the initial state,uc0&→Uuc0&.

These transformations, calledholonomies, are the gener-
alization of Berry’s phase, and can be computed in terms of
the Wilczek-Zee gauge connection@20#: U(C)
5Pexp(rCA), where P denotes path orderings,C is the
loop in the parameter space, andA5(m51

m 5Amdlm is
theu(n)-valued connection. IfuDi(l)& ( i 51, . . . ,n) are the
instantaneous eigenstates ofH(l), the connection is
(Am)ab5^Dau]/]VmuDb& (a,b51, . . . ,n).

It is useful to introduce thecurvature two-form F
5(mnFmndxm`dxn, where Fmn5]mAn2]nAm1@Am ,An#;
F allows us to evaluate the dimension of the holonomy group
and when this coincides with the dimension ofU(n) we are
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able to perform the universal quantum computation with ho-
lonomies.

For computation purposes, we note that if the connection
components commute@Am ,An#50, the curvature reduces to
Fmn5]mAn2]nAm and we can use Stokes theorem to com-
pute the holonomies. The holonomic transformation can be
calculated easilyU5exp(i*SFmndlm`dln), and depends on
the ‘‘flux’’ of Fmn through the surfaceSdelimited byC. It is
now clear that holonomies are associated to the geometrical
features of the parameter space.

Even if with an holonomy we can build every kind of
transformation~logical gate!, it is useful to think in terms of
few simple gates that constitute a universal set~i.e., which
can be composed to obtain any unitary operator!.

Many efforts have been made to implement geometrical
quantum gates~i.e., nuclear magnetic resonance@21# or su-
perconducting nanocircuits@22#! because they are believed
to be fault tolerant for errors due to an imperfect control of
parameters@23,24#. The nonadiabatic realizations of Berry’s
phase logic gates have been studied as well@25–28#. More
recently, schemes for the experimental implementation of
non-Abelian holonomic gates have been proposed for atomic
physics,@29# ion traps@30#, Josephson junctions@31#, Bose-
Einstein condensates@32#, and neutral atoms in cavity@33#.

The basic idea is to have a four-levelL system with an
excited state (ue&) connected to a triple degenerate space
with the logical qubits (u0& and u1&) and anancilla qubit
(ua&); the three degenerate states are separately addressed
and controlled. The effective interaction Hamiltonian de-
scribing the system is~in interaction picture!

Hint5\ue&~V0^0u1V1^1u1Va^au!1H.c. ~1!

H possesses a two degenerate states~called dark states!
with E(t)50 and two bright stateswith E(t)56V (V
5AuV0u21uV1u21uVau2). At t50, we codify the logical
information in one of these dark states~i.e., u0& or u1&) and
then, changing the Rabi frequencies (V i , i 50, 1, a), we
perform a loop in the parameter space@H(0)5H(T)#. If the
adiabatic condition is fullfilled at a generic timet, the state of
the system will be a dark state ofH(t) and the Hamiltonian
loop will correspond to a loop for the state vector. Since for
the adiabatic condition the excited state is never populated,
the instantaneous dark state will be a superposition of the
degenerate states. With this loop, we produce a rotation in
the degenerate space (u0&, u1&, ua&), starting from a logical
qubit and passing through theancilla qubit. At the beginning
and at the end of the cycle, we have only logical bits, but
after a loop a geometrical operator is applied to them. Since
we can diagonalize~1!, it is easy to calculate the connection
and the holonomy associated to the loop.

We can construct two single-qubit gates:U15eif1u1&^1u

~selective phase shift! and U25eif2sy @sy5 i (u1&^0u
2u0&^1u)#. These two gates (U1 and U2) are noncommut-
able, so we can construct non-Abelian holonomies since
U1U2ÞU2U1.

To obtain a universal set of gates, we must introduce a
two-qubit gate; since these gates exploit the interaction be-
tween two qubits, they will depend on the physical systems

considered. A common choice~@18,30#! is to realize a selec-
tive phase shift gateU35eif3u11&^11u.

III. EXCITONIC TRANSITIONS

In what follows, we show that if we can act on a quantum
dot with coherent optical~laser! pulses, we can produce
Coulomb-correlated electron-hole pairs~excitons! and deal
with an interaction Hamiltonian similar to the one described
in Eq. ~1!. By changing the laser parameters along the adia-
batic loop, we can produce the same single-qubit gates as in
Ref. @30#.

In the GaAs-based III-V compounds, the six electrons in
the valence band are divided in a quadruplet (G8 symmetry!
which corresponds toJtot53/2, and a doublet (G7 symme-
try! which corresponds toJtot51/2. If we consider a
GaAs/AlxGa12xAs quantum dot, the confining potential
~along thez growth axis! breaks the symmetry and lifts the
degeneracy@34#. The states of the quadruplet are separated in
Jz563/2 @heavy holes~HH!# and Jz561/2 @light holes
~LH!#. TheG7 electrons haveJz561/2. We can rewrite the
eigenstates ofJtot andJz using theuS&, uX&, uY&, uZ& states
~the fourG point Bloch function, Table I!.

If we shine the quantum dot with a laser beam, we excite
an electron from the valence band to the conduction band. In
the dipole approximation, we have to calculate the amplitude
transition^ f ue•r u i & ~wheree is the polarization vector of the
electromagnetic wave,u i & and u f & are the initial and final
states respectively!.

The only nonvanishing transition amplitudes for our cal-
culations arê SuxuX&, ^SuyuY&, ^SuzuZ&.

Using this relation and Table I, we can calculate which
transitions are allowed and which ones are forbidden.

First we note that, for states such asu(X1 iY)&, we can

TABLE I. G6 ~conduction band!, G7 , G8 periodic part of Bloch
function.

uJtot ,Jz& C G

u 1
2 , 1

2 & i uS↑& G6

u 1
2 ,2 1

2 & i uS↓& G6

u 3
2 , 3

2 &
1

A2
u~X1 iY!↑& G8 ~HH!

u 3
2 ,2 3

2 &
1

A2
u~X2 iY!↓& G8 ~HH!

u 3
2 , 1

2 & 2A 2
3 uZ↑&1

1

A6
u~X1 iY!↓& G8 ~LH!

u 3
2 ,2 1

2 & 2A 2
3 uZ↓&2

1

A6
u~X2 iY!↑& G8 ~LH!

u 1
2 , 1

2 &
1

A3
uZ↑&1

1

A3
u~X1 iY!↓& G7

u 1
2 ,2 1

2 &
1

A3
uZ↓&1

1

A3
u~X2 iY!↑& G7
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have a transition only using the ‘‘negative’’ circularly polar-
ized light, e5ex2 i ey ,

^Sue•ru~X1 iY!&5^Su~x2 iy !u~X1 iY!&

5^SuxuX&1^SuyuY&

52^SuxuX& ~2!

(^SuxuX&5^SuyuY& for the symmetry of our system!.
Using ‘‘positive’’ circularly polarized light, we have no

transition,

^Sue•ru~X1 iY!&5^Su~x1 iy !u~X1 iY!&

5^SuxuX&2^SuyuY&

50. ~3!

The latter are calledpolarization selection rules~PSR!.
We have also to consider the spin wave function in the

initial and final states. If the initial state has spin up~down!
the final state must have spin up~down! @spin selection rules
~SSR!#. For example,

^Su~x2 iy !u~X1 iY!&^↑u↑&52^SuxuX&,

^Su~x2 iy !u~X1 iY!&^↑u↓&50. ~4!

A. Heavy-hole transitions

From Table I, we have the heavy hole and theG6 ~con-
duction band! states; using SSR we can say that the only
allowed transitions are

U32 ,
3

2L 5
1

A2
u~X1 iY!↑&→U12 ,

1

2L 5 i uS↑&,

U32 ,2
3

2L 5
1

A2
u~X2 iY!↓&→U12 ,2

1

2L 5 i uS↓&.

The first transition is produced by the ‘‘negative’’ circu-
larly polarized light~we write the corresponding operator as
s2) and the second transition is produced by the ‘‘positive’’
circularly polarized light (s1) for the PSR.

In terms of excitons~electron-hole pairs!, if we perform a
transition withs2, we promote an electron with spin 3/2 of
the valence band to the conduction band with spin 1/2, and
we get an exciton with angular momentum21 (E2). With
s1 we promote an electron with spin23/2 of the valence
band to the conduction band with spin 1/2, and we have an
exciton with angular momentum 1 (E1).

B. Light-hole transitions

For the light hole, we have more allowed transitions; this
is due to the presence of theuZ& states in the wave function.
As for the HH transitions, usings6 we have

U32 ,
1

2L→U12 ,2
1

2L for s2,

U32 ,2
1

2L→U12 ,
1

2L for s1.

These transitions are allowed with circular~positive or
negative! polarization (e5ex6 i ey) and propagation along
the z ~growth! axis. If we have the wave propagating along
thex or y axis and the polarization alongz, then the transition
is allowed by PSR. Using also the SSR, we get the two
allowed transitions:

K 1

2
,
1

2UzU32 ,
1

2L ;^SuzuZ&, ~5!

K 1

2
,2

1

2UzU32 ,2
1

2L ;^SuzuZ&. ~6!

With the operators0, we have the following transitions:

U32 ,
1

2L→U12 ,
1

2L for s0,

U32 ,2
1

2L→U12 ,2
1

2L for s0.

Such transitions with polarization along thez axis have been
experimentally observed@35#.

Exciting light-hole electrons with three different kinds of
light ~left and right circular polarization and polarization
alongz axis!, we can induce three different kinds of transi-
tions with the same energy@35#.

In terms of excitons if we make a transition withs6, we
promote an electron with spin71/2 from the valence band to
the conduction band with spin61/2, and we get an exciton
with angular momentum61 (E6). Using light propagating
alongx or y axis withz polarization, we promote an electron
with spin 61/2 from the valence band to the conduction
band with spin61/2, and we have an exciton with angular
momentum 0 (E0).

FIG. 1. Level scheme for LH and HH.
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The allowed transitions and the corresponding energy-
level scheme for HH and LH are shown in Fig. 1.

C. G7 transitions

In the same way we can compute the transition selection
rules for theG7 electrons:

U12 ,
1

2L→U12 ,2
1

2L for s2,

U12 ,2
1

2L→U12 ,
1

2L for s1,

U12 ,
1

2L→U12 ,
1

2L for s0,

U12 ,2
1

2L→U12 ,2
1

2L for s0.

Like for the LH, we have three different kinds of transitions
that can be distinguished by the light polarization.

Those transitions are energetically higher with respect to
the LH and HH ones. Therefore, we should be able to forbid
them using properly tuned laser sources with bandwidth
DE,EG7

2ELH.0.3 eV @36#.

IV. EXCITON INTERACTION HAMILTONIAN
AND SINGLE-QUBIT GATES

Now we want to write the interaction Hamiltonian for the
exciton transitions~excludingG7 transitions!.

The Hamiltonian for the light-matter interaction is~we
use the electric field instead of the vector potential@37#!

Hint52e@PW •EW * ~ t !1H.c.#, ~7!

whereEW (t) is the electric field,PW is the polarization operator
defined as

PW 5(
n,m

vm
† cn^v,muerWuc,n&5(

n,m
vm

† cnmW nm* ~8!

and

mW nm5^c,nuerWuv,m&. ~9!

cn andcn
† are the annihilation and creation operators for an

electron in the conduction band with spinn (n561/2); vm

and vm
† are the annihilation and creation operators for an

electron in the valence band with spinm @m561/2 ~LH! or
m563/2 ~HH!#.

Then, using the dipole approximation@EW * (t)
5E0ei (kx2vt)e'E0e2 ivte#,

Hint52F(
n,m

vm
† cn^v,muerWuc,n&•EW * ~ t !1H.c.G . ~10!

We define

\Vn,m5mW nm* •EW * ~ t !5E0e2 ivte•^v,muerWuc,n&. ~11!

The last term is the dipole transition amplitude.
The termc61/2

† v63/2 describes the promotion of an elec-
tron with spin63/2 to the conduction band with spin61/2,
and then it describes the creation of a ‘‘heavy’’ exciton with
angular momentum61 (E6) from the ground stateG. In the
same way, we can rewrite the terms in Eq.~10! taking ac-
count of thelight-hole transition. With this new notation, we
have nonvanishing coefficients~as discussed in Sec. III! in
Table II.

The Hamiltonian becomes

Hint52\@V2,HHuEH
2&^Gu1V1,HHuEH

1&^Gu1V1,LHuEL
1&

3^Gu1V2,LHuEL
2&^Gu1V0,LHuEL

0&^Gu1H.c.#. ~12!

In the last term, we include the two identical kinds ofE0

excitons.
As we stated before, if we can address the light or heavy

hole we can distinguish betweenEHH
6 and ELH

6 ; so using
light with specified frequency tuned to LH transition, we can
write

Hint52\~V1,LHuEL
1&1V2,LHuEL

2&1V0,LHuEL
0&)

3^Gu1H.c. ~13!

This Hamiltonian has the same structure as the one pro-
posed in Ref.@30# to implement the holonomic quantum
computation with trapped ions. So we can construct the same
geometrical single-qubit gates (U1 and U2) using , for ex-
ample,E1 andE2 as u1& and u0& bits, respectively, andE0

as ancilla bitua&.
For the first gate, we chooseV250, V15

2V sin(u/2) eiw, and V05V cos(u/2). The dark states are
given byuE2& anduc&5cos(u/2)uE1&1sin(u/2)eiwuE0&. By
evaluating the connection associated with this two-
dimensional~2D! degenerate eigenspace, it is not difficult to
see that the unitary transformationU15eif1uE1&^E1u (f1
5 1

2 r sinudu dw) can be realized as a holonomy. For the sec-
ond gate, we chooseV25V sinu cosw, V15V sinu sinw,
and V05V cosu. The dark states are now given byuc1&
5cosu coswuE2&1cosu sinwuE1&2sinuuE0& and uc2&
5coswuE1&2sinwuE2&. In this case, the unitary transforma-
tion U25eif2sy ~where f25rsinu du dw and isy
5uE1&^E2u2uE2&^E1u) can be implemented.

TABLE II. Rabi frequencies for allowed transitions.

Vn,m v c Exciton

V 1
2 , 3

2
3
2 → 1

2 E2

V2
1
2 ,2 3

2
2

3
2 → 2

1
2 E1

V 1
2 ,2 1

2
2

1
2 → 1

2 E1

V2
1
2 , 1

2
1
2 → 2

1
2 E2

V 1
2 , 1

2
1
2 → 1

2 E0

V2
1
2 ,2 1

2
2

1
2 → 2

1
2 E0
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We performed numerical simulations to show how our
scheme works and how we can satisfy adiabaticity request
and apply logical gates. The exciton states have energies be-
tween 1.5 eV and 1.7 eV, which correspond to sub-
femtosecond time scale; then by using femtosecond laser
pulse, we avoid transition between theground and exciton
states during the evolution. Using Rabi frequencies of about
0.02 fs21 ~corresponding toV21550 fs) and evolution
times of Tad57.5 ps~as in the simulation!, we get for the
adiabatic conditionVTad5150@1, which assures us that
there will be no transition between thedark andbright states
~separated byV energy!.

In Fig. 2~a!, the loop in theu-f space is shown. Since the
holonomic operator depends on the solid angle (rdV
5rdu df sinu), the only contribution from this loop comes
from the first part and can be easily calculated*dV
51/2(sinum2umcosum). Then it is sufficient to changeum to
apply a different operator. In Fig. 2~b!, we show the loop in
the manifold of the control parameters for gate 2 (V2, V1,
V0), since the parameters are real, the 3D vectorVW evolves
on a sphere. These two figures refer to the implementation of

Hadamard gate@also shown in Figs. 3~b! and ~4!#, and we
chooseum in order to obtainrdV5p/4.

Figure 3 shows the state populations during the quantum-
mechanical evolution; as we can see, stateuG& is never popu-
lated~as expected in the adiabatic limit!. For the case of gate
1 @see Fig. 3~a!#, stateuE2& is decoupled in the evolution
while stateuE1& evolves to the ancilla state (uE0&) to even-
tually end in uE1& ~as we expect for the dark state!. In the
inset, we show the phase accumulated byuE1& state; of
course, in the central region the phase is undefined.

The quantum evolution of gate 2 in Fig. 3~b! is more
complicated because there are no decoupled states, and all
the three degenerate states are populated. We start fromuE1&
and end in a superposition ofuE1&-uE2&. It can be better
understood by looking at Fig. 4, where we show the evolu-
tion of the dark state in theuE1&, uE2&, uE0& space. As
mentioned above, the initial dark state evolves in the degen-
erate space: it starts from theuE1& axis, then passes through
a superposition of the three states, and ends in the
uE1&-uE2& plane@(uE1&1uE2&)/A2 state#.

The numerical simulations show that our scheme works,
and we are able to produce the desidered gates with realistic

FIG. 2. ~a! Loop in theu-f parameter space.~b! Evolution of uE1& in the uE2&2uE1&2uE0& space for gate 2 andf25p/4.

FIG. 3. ~a! Simulated time evolution of the HQC gate 1 withf15p/4 and initial stateuE1&. The inset shows~where it is defined! the
quantity w, wherewªarĝ C(t)uE1&/u^C(t)uE1&u. ~b! Simulated time evolution of the HQC gate 2 withf25p/4 ~Hadamard gate! and
initial stateuE1&.
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parameters for the semiconductor quantum dots@38# and for
the recent ultrafast laser technology@39#. Moreover, it is
clear ~also with the gates in Ref.@18#! that we are able to
apply different gates in the same gating time because the
latter depends only on the adiabatic constraint~and not on
the gate we choose! and, through the adiabatic limitation, we
can apply several quantum gates. In fact, recent studies@40#
have shown that excitons can exhibit a long dephasing time
~comparable to hole-electron recombination time! on a nano-
second time scale. The degeneracy in our model has an im-
portant role~even if the request can be made weaker and we
can use almost-degenerate state i.e. see Sec. IV A!, and this
can further prolong the dechoerence time till the recombina-
tion of light hole.

We are now in a position to make a comparison between
the performance of holonomic and standard dynamical quan-
tum gates. From a theoretical point of view, we can apply
about 100 single-qubit holonomic gates within decoherence-
recombination time. The dynamical gates are faster then the
holonomic ones. The gating time depends on the Rabi fre-
quency and the gate we choose, with the parameters used in
the previous simulations, we can estimate this operation time
to be about 0.1 ps~see e.g., Ref.@13#!. In this kind of nano-
structures, we have to deal with decoherence times of the
order of 100 ps@40#, and then one should be able to apply up
to thousands of dynamical quantum gates. The comparison
gets even worse when one turns to consider two-qubit gate.
The dynamical gates can be still realized on the picosecond
time scale, whereas the HQC requires much longer time~see
e.g., Fig. 7! due to the combination of two concurrent slow-
ing constraints:~1! validity—in the presentparticular HQC
scheme—of the second-order perturbative Hamiltonian~14!;
~2! the adiabaticity requirement with respect to the effective
Hint .

On the other hand, for the adiabatic model we have just to
satisfy the adiabatic condition, that is the choice of the gate
applied depends only on the loop in the parameter space;
even relatively complicated quantum computations can be
enacted by asingle adiabatic loop. This could open new
perspectives in quantum circuits implementation. We can
imagine to build quantum algorithms using new fundamental
gates that can be applied within the same adiabatic time.
Now the task is to find a loop to implement the desired gate,

this has been recently studied@41# by numerical simulations;
moreover, given a gate we can also find the best loop opti-
mizing the length in the parameter space or satisfying some
experimental constraint. It is difficult to apply the same ap-
proach to dynamical gates since they are typically thought
and performed by sequences of specified building-block op-
erations~e.g., laser-pulse sequences!.

For complicated enough operations, one typically needs a
lot of dynamical gates; the holonomic approach could be
preferred to the dynamical one for its simplicity, i.e., single
~few! adiabatic loop versus many dynamical gates, which in
turn might even lead to ashorter realization time.

A. Laser bandwidth

We saw that by using light with different polarizations, we
can induce different transitions and generateE6, E0 exci-
tons. To select which electron to excite~HH, LH, G7) we
have to use different energies; in factG7 transitions are the
most energetic ones, then there are the LH and the HH tran-
sitions.

For circular (6) polarization light propagating along thez
axis, we have@36# the ratios of probabilities to excite the
relative electron:

P~HH!

P~LH!
53,

P~HH!

G7
5

3

2
.

So it is sufficient that the laser bandwidth is not too large
(DE,ELH2EHH , butDE!EG7

2ELH) to excite HH instead

of LH and forbid theG7 transitions.
For light propagating along thex(y) axis withz polariza-

tion, the HH transitions are forbidden and

P~LH!

G7
52.

So even if this laser bandwidth isDE,EG7
2ELH , it is

more likely to produce LH transitions. As we mentioned be-
fore in a practical situation, we should be able to prohibit the
G7 transition just with these choices.

Now we show that even if we are not able to energetically
distinguish the HH and LH transitions the holonomic scheme
proposed works as usual. The level scheme for this configu-
ration is shown in Fig. 5. We can exciteEHH

6 excitons orELH
0

exciton. If we have an adiabatic evolution fast enough, the
three levels are mixed during the evolution and so, for our
scheme, they can be considered degenerate.

The energy gap between HH and LH excitons is of the
order of 0.05–0.03 eV@35,42–44#, whereas betweenG7 and
HH-LH the gap is about 0.3 eV. Both of these energy gaps
are very large compared to the bandwidth of the picosecond
and femtosecond pulsed laser, so in practical applications
one should be able to separate LH and HH excitons.

FIG. 4. Evolution of the initial stateuE1& in the uE2&2uE1&
2uE0& space for gate 2 andf25p/4.
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B. Dynamical phase

During the evolution along the adiabatic loop, the state
acquires a dynamical phase in addition to the geometrical
phase. In the first proposal of adiabatic gates with standard
two-level systems, additional work is needed to eliminate
this undesidered phase. In Ref.@45# they show how this dy-
namical phase can be eliminated: we have to run the geo-
metrical gate several times in order to let the dynamical
phases cancel each other. The drawback in this method is
that we have to iterate several times the adiabatic gate and,
because of the adiabatic condition, long time is needed to
apply the final geometrical gate.

In this model, if we use LH excitons, the logical and the
ancilla states are degenerate and the ground state is never
populated during the evolution; so the dynamical phase shift
is the same for the two logical qubits and can be neglected.

If we encode logical information in the HH excitons
(6) and use the LH exciton (0) as ancilla qubit, we have an
energy differenceDE and then a dynamical phase appears.
Again, we can neglect it because at the begining~encoding
of information! and at the end~reading information! of the
evolution, uE0& state is never populated and then the phase

difference does not affect the logical information. Then, in
both models, we can avoid problems with the dynamical
phase.

V. TWO-QUBIT GATE

For the two-qubit gate, we cannot take directly the Duan-
Chirac-Zoller~DCZ! model but we use the biexcitonic shift
@13#. In fact if we have two coupled quantum dots, the pres-
ence of an exciton in one of them~e.g., in dotb) produces a
shift in the energy level of the other~e.g., dota) from E to
E1d/2.

Let us consider the two dots in the ground stateuGG&; if
we shine them with circular~positive or negative! light at
E1d/2 energy, we should be able to produce two excitons
uEE& ~see Appendix A!. For energy conservation, this is the
only possible transition~the absorption of a single photon is
at energyE). The detuning allows us to isolate the two-
exciton space (uEE&) from the single-exciton space (uEG&,
uGE&). The level scheme is shown in Fig. 6.

To show how the two-photon process happens, we solved
numerically the Schro¨dinger equation for a four-level system
(uEE&, uEG&, uGE&, uGG&). In Fig. 7~a!, we show the popu-

FIG. 5. Level scheme for geometrical gates when is impossible
to address only HH or LH.

FIG. 6. Level scheme for the two-photon process.

FIG. 7. ~a! Production of a biexciton state and isolation of theuEi& ^ 22uG& ^ 2 space. The Rabi oscilation betweenuEi& ^ 2 anduG& ^ 2 states
are evident and the statesuEG& anduGE& are weakly populated.~b! Simulated population evolution for the two-qubit gate. The values of the
parameters ared55 meV, uV1,2u5d/15 ~for single laser Rabi frequency! , Tad50.8 ns. The gate fidelityF5u^C idealuC(Tad)&u2

50.9859.
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lation evolution of the states; the Rabi oscillations between
uEE& and uGG& are evident and the statesuEG&, uGE& are
weakly populated. In order to fulfill the perturbation condi-
tion and clearly show Rabi oscillations we choosed/V
515.

We have another degree of freedom in our system: the
polarization. Shining the dot with circular or linear polariza-
tion, we will obtain uGG&→uEiEj& ( i , j 51,2,0) and can
reproduce the scheme with polarized excitons. The general
Hamiltonian for the two-photon process is~in interaction
representation!

Hint52
2\2

d (
i , j 51,2,0

~Ṽ iṼ je
i (f i1f j )uEiEj&^GGu1H.c.!.

~14!

The total two-exciton space has dimension nine but we
can restrict to four-dimensional space, turning off the two
laser with the same polarization~i.e., 2 or 0), and because
of this situation the scheme is slightly different from the
one proposed in the other papers. In Ref.@18#, we show
how to construct a phase gate; turning on the1 and 0
lasers and modulating them to simulate the evolution in gate
1, we were able to obtain the geometrical operatorU3
5exp(ifuE1&^E1u^2). We can decouple the logical states with
negative energy, but we still need four lasers~two with 1
polarization and two with 0 polarization! to produce a loop
in the uE1& ^ 22uE0& ^ 2 space. The1 and 0 lasers must be
resonant with the two-exciton transition, but in this scheme
we also produce nonlogical statesuE1E0& anduE0E1& since
they have the same energy (v i

11v j
152E1d). Then we

have a bigger dark space with dimension three, and the
scheme is not directly repeated. A detailed calculation of the
dark states is given in Appendix B.

Now we show how to construct another two-qubit geo-
metrical operator with the same scheme. Since, in general, an
adiabatic loop will produce a superposition ofall the dark
states, we change the laser polarization (0→2) so that the
system can evolve in the logical space. We note that the
space is big enough to produce nontrivial transformation
even without the ancilla qubits.

We choose the single-laser Rabi frequencies in order to
have V115V sin(u/2), V225V cos(u/2), V12

5VAusin(u/2)cos(u/2)u, where 0<u<4p. The dark state
are

uD1&5cos
u

2
u11&2sin

u

2
u22&,

uD2&5
1

A2
~ u12&2u21&),

uD3&5A usinuu
11usinuuS sin

u

2
u11&1cos

u

2
u22& D

2
1

A2~11usinuu!
~ u12&1u21&). ~15!

The associated connection is

Au5S 0 1/2A usinuu
11usinuu

21/2A usinuu
11usinuu

0
D . ~16!

Of course, for different values ofu, @Au ,Au8#50 and we
can calculate the loop integral and then the holonomy. From
numerical calculation, we have

a5 R 1/2A usinuu
11usinuu

du5E
0

4p

1/2A usinuu
11usinuu

du

53.6806

and for the holonomic operator,

U5eiasy5S cosa sina

2sina cosa D . ~17!

We write explicitly the final state usinguD1(4p)&
5uE1& ^ 2 and uD2(4p)&51/A2(uE1E2&1uE2E1&),

UuE1& ^ 25cosauE1& ^ 22
sina

A2
~ uE1E2&1uE2E1&).

~18!

This is an entangling gate, and then we have another non-
trivial gate.

Now we have to satisfy both the second-order perturba-
tive @from Eq. ~14!, d/uV i u2@1] and the adiabatic require-
ment; this implies thatTad@d/uV i u2@1/uV i u. Because of the
two-photon scheme the operation times for the two-qubit
gates are necessarily longer than the ones for the single qu-
bit.

In Fig. 7, we show the numerical simulation obtained by
solving the Schro¨dinger equation. It is difficult to follow the
evolution of the states because of the number of the states
populated during the evolution and because of their mixing.
Moreover, it can be noted thatuGG& state never appears in
the evolution,uE2& ^ 2 state is not present at the end of the
evolution, and the final state is a superposition ofuE1& ^ 2

and ~symmetrically! uE1E2&2uE2E1& state. In the simula-
tions, we choosed55 meV ~as in Ref.@13#! and, for single-
laser Rabi frequency,uV i u5d/15 ~to satisfy the perturbation
request!; with these parameters, the adiabatic time isTad
50.8 ns.

VI. CONCLUSIONS

In summary, we have shown that geometrical gates can be
implemented in quantum dots with optical control. We use
polarized excitons to encode logical information and we
have been able to construct a universal set of geometrical
quantum gates. The biexcitonic shift due to exciton-exciton
dipole coupling is exploited to implement the two-qubit
gates. Numerical simulations clearly suggest that one should
able to apply several~a few! single-qubit~two-qubit! holo-

SOLINAS et al. PHYSICAL REVIEW A 67, 062315 ~2003!

062315-8



nomic gates within the decoherence time.
Even though the fault-tolerance features of this geometri-

cal approach have not been completely clarified so far~see
e.g., Ref.@46#!, HQC surely provides, on one hand, a sort of
an intermediate step towards topological quantum computing
and on the other hand, it is a natural arena in which we
explore fascinating quantum phenomena.

Finally, we hope that the theoretical investigations pre-
sented here will be effective in stimulating novel experimen-
tal activity in the field of coherent phenomena in semicon-
ductor nanostructures.
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APPENDIX A: TWO-PHOTON PROCESS

Here we show how a two-photon process may occur in
our system. Let us consider two coupled quantum dots. The
energy-level spacing in this case is different, in fact the pres-
ence of an exciton in one of them~e.g., in dotb) produces a
shift in the energy level of the other~e.g., dota) from E to
E1d/2. We have the following Hamiltonian:

H05~2E1d!~ uE&^Eu! ^ 21E~ uEG&^EGu1uGE&^GEu!.
~A1!

Using two lasers with frequenciesv5(E1d/2) (\51),
the interaction Hamiltonian is@we explicitly take into ac-
count the time dependenceV i5Ṽ ie

2 ivt from Eq. ~11!#

Hint52\ (
i 51,2

~Ṽ ie
2 ivtuEi&^Gi u1Ṽ i* eivtuGi&^Ei u!.

~A2!

The effective Hamiltonian for the process is~the apex 2
indicate that it is a second-order process!

Hint
(2)52\Ṽe2 i ṽtuE&^Gu ^ 21H.c., ~A3!

where ṽ52v is the frequency that produces the transition
between uGG& and uEE&. There are four possible states
(uGG&, uEG&, uGE&, uEE&); let the initial state beuGG& and
we want to know the amplitude coefficient for theuGG&
→uEE& ~Fig. 6!. To do this we use the interaction picture,

^ i ueiH 0t/\Hinte
2 iH 0t/\u j &5ei (v i2v j )te6 ivt^ i uH̃ intu j &

~A4!

~the matrix element̂ i uH̃ intu j & is time independent! with the
initial conditions uc(0)&5uGG& (uc(t)&5(ci j (t)u i j &, i , j
5E,G), v85vEE2vm , and v95vm , with perturbation
theory to the second order, we get (um& ’s are the intermediate
statesuEG& and uGE& with energyE5\vm)

cEE
(2)~ t !5S 2

i

\ D 2

(
m

E
0

t

dt1^EEuH̃ intum&ei (v82v)t1

3E
0

t1
dt2^muH̃ intuGG&ei (v92v)t2. ~A5!

Using v91v822v50, performing the double integra-
tion, we get

cEE
(2)~ t !5S 2

i

\ D 2

(
m

^EEuH̃ intum&^muH̃ intuGG&
1

i ~v92v!

3S t2
ei (v82v)t21

i ~v82v!
D . ~A6!

The term 12ei (v82v)ti (v82v) oscillates so the leading
term is proportional tot

cEE
(2)~ t !'

i

\2 (
m

^EEuH̃ intum&^muH̃ intuGG&

v92v
t. ~A7!

Now we go back to the second-order Hamiltonian~A3!
~two-photon process! and calculate the evolution (Dv

5vEE52v andDv2ṽ50)

cEE
(2)52

i

\E0

t

dt1^EEuH̃ int
(2)uGG&ei (Dv2ṽ)t1

52
i

\
^EEuH̃ int

(2)uGG&E
0

t

dt1

52
i

\
~2\Ṽ!t

5 i Ṽt. ~A8!

The twocEE
(2)’s are calculated to the same order, so using Eqs.

~A6! and ~A8!,

Ṽ5
1

\2 (
m

^EEuH̃ intum&^muH̃ intuGG&

v92v
. ~A9!

In our system,

^EEuH̃ intuEG&^EGuH̃ intuGG&5^EEuH̃ intuGE&

3^GEuH̃ intuGG&

5\2Ṽ1Ṽ2 ~A10!

and we have the Rabi frequency for the two-photon process
as function of the single-photon process (vm9 2v5d/\).

Ṽ5
2\Ṽ1Ṽ2

d
. ~A11!
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We take into account the two-exciton production forE1

and E0, and chooseṼ1i5Ṽ i , Ṽ2i5Ṽ ie
iw i with i 51,0.

The phenomenological Hamiltonian~A3! became

Hint52
2\2

d
Ṽ2eiwuE&^Gu ^ 21H.c. ~A12!

APPENDIX B: HOLONOMIC STRUCTURE
OF THE TWO-PHOTON PROCESS

To explicitly calculate the dark state of Hamiltonian~14!,
we change notation and include the phase in the definition of
Rabi frequenciesV i j 5Ṽ iṼ je

i (f i1f j ), rewrite the Hamil-
tonian taking account of production of the same spin exci-
tons (i 5 j ), choose the loop in order to have symmetric Rabi
frequenciesV i j 5V j i , and we obtain~with uEi&5u i &):

Hint52
2\2

d
~V11!* u11&1~V j j !* u j j &1~V1 j !* ~ u1 j &

1u j 1&)^GGu1H.c., ~B1!

where we can takej 50,2 to implement different gates since
we reduce the dark space and work with just two polarized
excitons.

In addition to the decoupled states which do not appear in
Eq. B1, we have three dark states (V25uV11u21uV j j u2):

uD1&5
~V j j !* u11&2~V11!* u j j &

V
,

uD2&5
1

A2
~ u1 j &2u j 1&),

uD3&5
1

VAuV i j u21V2/2
@~V i j !* ~V11u11&1V j j u j j &)

2
V2

2
~ u1 j &1u j 1&)]. ~B2!

Now we can explicitly calculate some connection for par-
ticular loops. we choosej 50 for the laser Rabi frequencies
V i

15AV sin(u/2)exp(iw/2), V i
05AV cos(u/2) (i 51,2 is

the dot index!, and we use a loop in theu and f plane
similar to the one in Fig. 2 (0<u<p and 0<f<p/2); then
we have for the effective Rabi frequencies

V115V sin
u

2
eiw,

V005V cos
u

2
,

V105VAsin
u

2
cos

u

2
exp~ iw/2!. ~B3!

The dark states in Eq.~B2! explicitly take the form

uD1&5cos
u

2
u11&2sin

u

2
e2 iwuu00&,

uD2&5
1

A2
~ u10&2u01&),

uD3&5A sinu

11sinuS sin
u

2
eiw/2u11&1cos

u

2
e2 iw/2u00& D

2
1

A2~11sinu!
~ u10&1u01&). ~B4!

The connection associated is

Au5S 0 1/2A sinu

21sinu
eiw/2

21/2A sinu

11sinu
e2 iw/2 0

D ,

~B5!

Aw

5S 2 isin2
u

2
i /2A sinu

21sinu
sinu eiw/2

i /2A sinu

11sinu
sinue2 iw/2 i /2

sinu

11sinu
D .

~B6!

The holonomic operator cannot be analytically calculated be-
cause the connections do not commute. Then we calculated it
with computer simulations by discretization of the loop in
the parameter space.
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