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Abstract

This work presents a direct procedure to apply Padé method to find approximate solutions for nonlinear differential
equations. Moreover, we present some cases study showing the strength of the method to generate highly accurate
rational approximate solutions compared to other semi-analytical methods. The type of tested nonlinear equations
are: a highly nonlinear boundary value problem, a differential-algebraic oscillator problem, and an asymptotic
problem. The high accurate handy approximations obtained by the direct application of Padé method shows the high
potential if the proposed scheme to approximate a wide variety of problems. What is more, the direct application of
the Padé approximant aids to avoid the previous application of an approximative method like Taylor series method,
homotopy perturbation method, Adomian Decomposition method, homotopy analysis method, variational iteration
method, among others, as tools to obtain a power series solutions to post-treat with the Padé approximant.
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1 Introduction
Solving differential equations is an important issue in
sciences because many physical phenomena are mod-
elled using such equations. The Padé method is a well
established resummation method from literature. It can
increase the domain of convergence of truncate power
series (Bararnia et al. 2012; Guerrero et al. 2013; Torabi
and Yaghoobi 2011; Vazquez-Leal and Guerrero 2013).
It is has been applied to the improve the accuracy of
truncated power obtained by power series method (PSM)
(Forsyth 1906; Geddes 1979; Ince 1956; Vazquez-Leal and
Guerrero 2013), AdomianDecompositionmethod (ADM)
(Wazwaz 2006; Wang et al. 2011), homotopy perturba-
tion method (HPM) (Bararnia et al. 2012; Rashidi and
Keimanesh 2010; Torabi and Yaghoobi 2011), homotopy
analysis method (HAM) (Guerrero et al. 2013), differen-
tial transform method (DTM) (Rashidi and Keimanesh
2010; Rashidi et al. 2010; Rashidi and Pour 2010a, 2010b),
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among others, during the solution procedure for linear
and nonlinear differential equations. Nonetheless, in this
work, we propose that the solution of a differential
equation can be directly expressed as a rational power
series of the independent variable, in other words as
a Padé approximant. The proposed procedure will be
described by solving several nonlinear problems and com-
paring results with other semi-analytic methods. The
direct application of Padé eradicates the necessity to
obtain a power series solution (by some approximative
method) to post-treat it with the Padé approximant.
Instead, we substitute a Padé approximant of a given order
directly to the nonlinear differential equation; it results a
residual power series in terms of the independent variable.
Next, from the lowest order, we equate each coefficient of
such power series to zero, resulting a system of nonlinear
algebraic equations (NAEs). Finally, we resolve the NAEs
in order to minimize the residual error of the differential
equation.
This paper is organized as follows. In Section 2, we

introduce the basic concepts of the Padé approximant.
Next, the procedure to approximate nonlinear differential
equations with Padé is presented in Section 3. In Section 4
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some cases study are presented. In Section 5, numerical
simulations and a discussion about the results are pro-
vided. Finally, a brief conclusion is given in Section 6.

2 Padé approximant
Given an analytical function u(t) with Maclaurin’s
expansion

u (t) =
∞∑
n=0

untn, 0 ≤ t ≤ T . (1)

The Padé approximant to u (t) of order [ L,M] which we
denote by [ L/M]u (t) is defined by (Baker 1975)

[ L/M]u (t) = p0 + p1t + . . . + pLtL

1 + q1t + . . . + qMtM
, (2)

where we considered q0 = 1, and the numerator and
denominator have no common factors.
The numerator and the denominator in (2) are con-

structed so that u (t) and [ L/M]u (t) and their derivatives
agree at t = 0 up to L + M. That is

u(t)−[ L/M]u (t) = O
(
tL+M+1) . (3)

From (3), we have

u (t)

( M∑
i=1

qiti
)

−
( L∑

i=0
piti

)
= O

(
tL+M+1) . (4)

From (4), we get the following systems⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uLq1 + . . . + uL−M+1qM = −uL+1

uL+1q1 + . . . + uL−M+2qM = −uL+2

...
uL+M−1q1 + . . . + uLqM = −uL+M,

(5)

and⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p0 = u0
p1 = u1 + u0q1
...
pL = uL + uL−1q1 + . . . + u0qL.

(6)

From (5), we calculate first all the coefficients qi, 1 ≤ i ≤
M. Then, we determine the coefficient pi, 0 ≤ i ≤ L from
(6).
Note that for a fixed value of L + M + 1, the error (3) is

smallest when the numerator and denominator of (2) have
the same degree or when the numerator has degree one
higher than the denominator.

3 Padé applied to solve nonlinear differential
equations

It can be considered that a nonlinear differential equation
can be expressed as

L1(u) + N(u) = 0, where x ∈ �, (7)

having as boundary condition

B
(
u,

∂u
∂η

)
= 0, where x ∈ �, (8)

where L1 and N, are a linear and a non-linear operator,
respectively; B is a boundary operator, � is the boundary
of domain �, and ∂u/∂η denotes differentiation along the
normal drawn outwards from �.
Now, we assume that the solution for (7) can be written

as

u(x) =
∑L

i=0 vi(x − x0)i∑M
i=0 wi(x − x0)i

, (9)

where v0, v1, . . . and w0,w1, . . . are unknowns to be deter-
mined by the Padé method, L, M are the order of the
numerator and denominator, and x0 is an arbitrary con-
stant.
There is not a systematic method to choose the optimal

Padé order [ L/M] for a given problem. However, usually,
a finite number of terms are required in order to obtain a
highly accurate Padé approximation. The basic process of
direct Padé procedure can be described as:

1. The boundary conditions of (7) are substituted in (9)
to generate an equation for each boundary condition.
It is important to notice, that there is an algebraic
equation for each boundary condition, hence, the
rest of equations required to generate a NAEs (with
the same number of variables and equations) are
obtained from the next step.

2. u(x) from (9) is substituted into (7), then, we regroup
the resulting equation in terms of the x-powers. It is
important to notice that the operators L1 and N will
be applied to u(x). After this, the regrouping
procedure will include the eradication of the
denominator terms emanated from the Padé
approximant (9). In this way, the resulting expression
is a power series that represents the residual error of
the differential equation (7).

3. In order to reduce the residual error; from the lowest
order, we equate each coefficient of the x-powers in
the resulting residual power series to zero to obtain
an algebraic equation in terms of the unknown
coefficients of (9).

4. Aforementioned steps generates a NAEs in terms of
the unknowns from (9).

5. Finally, we solve the NAEs to obtain v0, v1, . . . and
w0,w1, . . ..

4 Cases study
In this section, we will solve several nonlinear problems of
different types to show the validity and power of the direct
application of Padé method to solve a broad spectrum of
equations.



Vazquez-Leal et al. SpringerPlus 2014, 3:563 Page 3 of 11
http://www.springerplus.com/content/3/1/563

4.1 A boundary value problem
The Troesch’s equation is a boundary value problem
(BVP) derived from research on the confinement of a
plasma column by radiation pressure (Weibel 1959) and
also from the theory of gas porous electrodes (Gidaspow
and Baker 1973; Markin et al. 1966). The problem is
expressed as

y′′ = n sinh(ny), y(0) = 0, y(1) = 1, (10)

where prime denotes differentiation with respect to x and
n is known as Troesch’s parameter.
In order to facilitate the application of Padé method, we

convert the hyperbolic-type nonlinearity from Troesch’s
problem into a polynomial type nonlinearity (Chang 2010;
Vazquez-Leal et al. 2012c), using the variable transforma-
tion

u(x) = tanh
(n
4
y(x)

)
. (11)

After using (11), we obtain the following transformed
problem

(
1 − u2

)
u′′ + 2u(u′)2 − n2u(1 + u2) = 0, (12)

where conditions are obtained by using variable transfor-
mation (11).
Then, substituting original boundary conditions y(0) =

0 and y(1) = 1 into (11), results

u(0) = 0, and u(1) = tanh
(n
4

)
. (13)

We suppose that solution for (12) has the following
rational expression

u(x) =
∑L

i=0 vi(x − x0)i∑M
i=0 wi(x − x0)i

, (14)

where w0 = 1, x0 = 0, and L = M = 8.
Substituting (14) into (12), rearranging and equating

terms having the same x-powers, we obtain

2v2 − 2v1w1+ 2v0w2
1 − 2v0w2+ 2v30w2 + 2v0v21 − 2v20v1w1

− 2v20v2 − n2v30 − n2v0 + (
12v4 − 4v2w2 + 12v3w1

−12v1w3 + 4v0w2
2 − 12v0w4 − 8v1w1w2 + 8v2v21

−12v4v20 + 12v30w4 + 4v22v0 + 8v0w2
1w2 + 12v1v20w3

−4v20v2w2 − 8v2v1v0w1 − 12v3v20w1 − v2n2 − 3n2v0w2

−3v2v20n
2 − 3n2v0w2

1 − 3v21v0n
2 − 3v1n2w1 − n2v30w2

−3v1v20n
2w1

)
x + · · · = 0.

(15)

Next, equating coefficients of x in (15) to zero, we obtain
the following system of nonlinear algebraic equations

x0 : 2v2 − 2v1w1 + 2v0w2
1 − 2v0w2 + 2v30w2 + 2v0v21

− 2v20v1w1 − 2v20v2 − n2v30 − n2v0 = 0,
x1 : 12v4 − 4v2w2 + 12v3w1 − 12v1w3 + 4v0w2

2

− 12v0w4 − 8v1w1w2 + 8v2v21 − 12v4v20 + 12v30w4

+ 4v22v0 + 8v0w2
1w2 + 12v1v20w3 − 4v20v2w2

− 8v2v1v0w1 − 12v3v20w1 − v2n2 − 3n2v0w2

− 3v2v20n
2 − 3n2v0w2

1 − 3v21v0n
2 − 3v1n2w1

− n2v30w2 − 3v1v20n2w1 = 0,
...

(16)

Now, in order to consider the boundary conditions (13),
we substitute them into (14) to obtain

v0 = 0,∑8
i=0 vi

1 + ∑8
i=1 wi

= tanh
(n
4

)
,

(17)

corresponding to u(0) = 0 and u(1) = tanh
(n
4
)
, respec-

tively.
Then, solving the system composed by (16) and (17), it

results

v0 = 0, v1 = .119880474427, v2 = .380280473821, v3

= .564352544936,

v4 = 0.706909216018 × 10−2, v5 = 0.0129612620679,

v6 = −0.591199285830 × 10−4, v7 = 0.896122363451

× 10−5, v8 = −6.33691960724 × 10−7,

w1 = 3.17216357074,w2 = 4.67075066552,w3

= −0.0580095782038,
w4 = −0.0645500498446,w5 = 0.286395017212e − 3,w6

= 0.449835719687 × 10−3,

w7 = −0.159764848819 × 10−5,w8

= −0.459066511294 × 10−5,
(18)
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and

v0 = 0, v1 = 0.211300671328, v2 = 0, v3
= 0.0205074952135, v4 = 0,

v5 = −0.214876109142 × 10−4, v6 = 0, v7
= −0.111221356703 × 10−4, v8 = 0,

w1 = 0,w2 = −0.0547303880429,w3 = 0,
w4 = 0.109464583871 × 10−2,w5 = 0,w6

= −0.270186358901 × 10−4,
w7 = 0,w8 = −3.83815897415 × 10−7,

(19)

for n = 0.5 and n = 1, respectively.
Finally, from (11) and (14), the proposed solution of

Troesch’s problem is

y(x) = 4
n
tanh−1

( ∑8
i=0 vixi∑8
i=0 wixi

)
, 0 ≤ x ≤ 1, (20)

where (18) or (19) are used depending on the value of n.

4.2 Differential-algebraic equation
Consider the index one differential-algebraic equation
system (DAEs) (Amat et al. 2012)

y′ − z = 0, y(0) =
√
2
2

,

y2 + z2 − 1 = 0, z(0) =
√
2
2

,
(21)

where prime denotes derivative with respect to t, and the
exact solution is

y(t) = sin
(
t + π

4

)
,

z(t) = cos
(
t + π

4

)
.

(22)

We suppose that solution for (21) has the following
rational form

y(t) =
∑L1

i=0 v1,iti∑M1
i=0 w1,i(t − t0)i

,

z(t) =
∑L2

i=0 v2,iti∑M2
i=0 w2,i(t − t0)i

,
(23)

where w1,0 and w2,0 are considered as 1 to simplify the
process of solution, and t0 = 0.
If we consider L1 = M1 = L2 = M2 = 12, and substitut-

ing (23) into (21); rearranging and equating terms having
the same t-powers, we obtain

v1,1 − v2,0 − v1,0w1,1 + (−v2,1 − 2v1,0w1,2 − v1,0w1,1w2,1

+v1,1w2,1 − 2v2,0w1,1 + 2v1,2
)
t + · · · = 0,

− 1 + v22,0 + v21,0 + (−2w1,1 + 2v22,0w1,1 + 2v21,0w2,1

+2v2,0v2,1 + 2v1,0v1,1 − 2w2,1
)
t + · · · = 0.

(24)

Next, equating coefficients of t in (24) to zero, we obtain
the following system of nonlinear algebraic equations

t0 :v1,1 − v2,0 − v1,0w1,1 = 0,
t1 : − v2,1 − 2v1,0w1,2 − v1,0w1,1w2,1 + v1,1w2,1

− 2v2,0w1,1 + 2v1,2 = 0,
...

t0 : − 1 + v22,0 + v21,0 = 0,
t1 : − 2w1,1 + 2v22,0w1,1 + 2v21,0w2,1 + 2v2,0v2,1

+ 2v1,0v1,1 − 2w2,1 = 0.
...

(25)

Now, in order to consider the initial conditions from
(21), we substitute them into (23) to obtain

v1,0 =
√
2
2

,

v2,0 =
√
2
2

,
(26)

corresponding to y(0) =
√
2
2 and z(0) =

√
2
2 , respectively.

Solving the NAEs composed by (25) and (26), it results
the coefficients shown in Table 1.
From (23) and Table 1, the proposed solution is

y(t) =
∑12

i=0 v1,iti∑12
i=0 w1,iti

,

z(t) =
∑12

i=0 v2,iti∑12
i=0 w2,iti

,
(27)

4.3 Asymptotic problem
The quadratic Riccati equation is a well known, and diffi-
cult to solve, asymptotic problem for approximativemeth-
ods (Abbasbandy 2006, 2007; Tan and Abbasbandy 2008;
Tsai and Chen 2010). The problem is expressed as follows

Y ′ − 2Y + Y 2 − 1 = 0, Y (0) = 0, (28)

where prime denotes differentiation with respect to t. The
exact solution of (28), was found to be

Y (t) = 1 + √
2 tanh

(√
2t + 1

2
log

(√
2 − 1√
2 + 1

))
. (29)

We suppose that solution for (28) has the following
rational form

Y (t) =
∑L

i=0 vi(t − t0)i∑M
i=0 wi(t − t0)i

, (30)

where w0 = 1, t0 = 0, and L = M = 4.
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Table 1 Coefficients from Padé approximant (27) for DAEs (21)

i v1,i w1,i v2,i w2,i

0 0.7071067812 1 0.7071067812 1

1 0.6944478949 -0.01790236873 -0.710785391 -0.005202339869

2 -0.3552705766 0.015473901 -0.3381563291 0.01657239326

3 -0.1007688245 -0.0002670569686 0.1079008196 -0.0001006409133

4 0.02599872528 0.0001213625776 0.02316102487 0.0001405811897

5 0.003720336719 -1.958219599e-06 -0.004157250847 -9.478457134e-07

6 -0.0006440541915 6.292610474e-07 -0.0005234980593 7.978499480e-07

7 -5.257637767e-05 -9.004870369e-09 6.112387339e-05 -5.582330983e-09

8 6.857858371e-06 2.327029094e-09 4.879283240e-06 3.277470106e-09

9 3.140311387e-07 -2.662291749e-11 -3.785438873e-07 -2.120465882e-11

10 -3.286935291e-08 5.983862645e-12 -1.897258525e-08 9.536760323e-12

11 -6.790217810e-10 -4.175830173e-14 8.457510263e-10 -4.313868912e-14

12 5.933734260e-11 8.658872139e-15 2.337878489e-11 1.599248188e-14

Substituting (30) into (28), rearranging and equating
terms having the same t-powers, we obtain the following
system of equations

t0 : −1 + v1 − v0w1 − 2v0 + v20 = 0,
t1 : −4w1 + 2v0v1 + 2v2 − 2v0w2 − 6v0w1 − 2v1

+ 2v1w1 − 2v0w2
1 + 2w1v20 = 0,

...
(31)

In order to consider the initial condition of Y (0) = 0,
we substitute it into (30) to obtain

v0
w0

= 0, (32)

Then, using (32) and (31) and solving, results

Y (t) = t+0.19047619t3

1 − t + 0.85714286t2−0.19047619t3+0.038095238t4
.

(33)

Now, we will obtain another Padé approximant from
(29), for the expansion point Y (1.7) = 2.28577828560.
Therefore, using such point as initial condition, we gener-
ate the following extra equation

v0
w0

= 2.28577828560, (34)

Next, using (31) and (34) to obtain the coefficients from
Padé expression (30), and substituting t by expansion
point (t − 1.7), results

We can see in Figure 1 a comparison between (33) and
(35) to exact solution (29). It results that changing the
expansion point was useful to increase the domain of con-
vergence of the Padé method for this case study. However,
a systematic procedure to choose the optimal expansion
point for general problems is a pending task for future
research.

5 Numerical simulation and discussion
On one side, semi-analytic methods like: generalized
homotopy method (GHM) (Vazquez-Leal 2013), homo-
topy perturbation method (Araghi and Rezapour 2011;
Araghi and Sotoodeh 2012; Bayat et al. 2013, 2014; Biazar
and Eslami 2011; Biazar and Ghanbari 2012; Filobello-
Nino et al. 2012a, 2012b; He 1999, 2009; Khan et al. 2012a,
2012b; Vazquez-Leal 2012; Vazquez-Leal et al. 2012a,
2012b, 2012d), homotopy analysis method (Hassana and
El-Tawil 2011; He 2004; Rashidi et al 2012a, 2012b;
Tan and Abbasbandy 2008), variational iteration method
(Abbasbandy 2007; Chang 2010; Khan et al. 2012c),
among others (Khan et al. 2012d), need an initial approx-
imation for the sought solutions and the calculus of one
or several adjustment parameters. If the initial approxima-
tion is properly chosen, the results can be highly accurate,
nonetheless, there is not a general method to choose
such initial approximation. This issue motivates the use
of adjustment parameters obtained by minimizing the
least-squares error with respect to the numerical solution.
On the other side, the Padé method obtain its coeffi-
cients using a straightforward procedure. Furthermore, at
least for low-order approximations, the solution can be

Y (t) = −3.3000449+3.2857784t+1.9592386(t−1.7)2+0.62586255(t−1.7)3+0.087077272(t−1.7)4
−1.1858233+1.2857784t+0.85714286(t−1.7)2+0.24491017(t−1.7)3+0.038095238(t−1.7)4 . (35)
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Figure 1 Exact solution (29) (solid line), Padé approximations (33) (diamonds), (35) (circles), and a 250 terms power series solution
(dash-dot).

easily obtained using the “solve” or “fsolve” commands
of MAPLE or equivalent routines from Mathematica or
MATLAB.
We presented several cases study to show the successful

use of the Padé method to solve directly a wide variety
of nonlinear problems. For instance, the Troesch’s BVP
problem is a benchmark equation for numerical (Erdogan
and Ozis 2011; Lin et al. 2008) and semi-analytical
methods (Chang 2010; Deeba 2000; Feng et al. 2007;
Hassana and El-Tawil 2011; Khuri 2003; Mirmoradia et al.
2009; Vazquez-Leal et al. 2012c) due to the numerical
problems to solve it. Nevertheless, as shown in Table 2,
the Padé approximation (20) is exact for n=0.5 com-
pared to the numerical solution reported in (Erdogan and
Ozis 2011; Lin et al. 2008). This result is relevant con-
sidering the high error values of the solutions reported
using other semi-analytical methods: homotopy pertur-
bation method (HPM) (Feng et al. 2007; Mirmoradia
et al. 2009; Vazquez-Leal et al. 2012c), Adomian Decom-
position method (ADM) (Deeba et al. 2000), homotopy
analysis method (HAM) (Hassana and El-Tawil 2011)
and Laplace decomposition transform method (LDTM)
(Khuri 2003). All of them possess an average absolute rela-
tive error (A.A.R.E.) significantly larger that our results. A
similar result was found for n = 1 as presented in Table 3.
Therefore, the direct Padé method can, potentially, be an
excellent tool to solve nonlinear BVP problems described
over finite intervals. It is important to remark that for
boundary conditions over finite intervals, the traditional
Padé approximant applied to the power series of the exact
solution or to the exact solution, can only guarantee one
boundary condition (traditionally at x = 0). However,
the proposed method build a restriction equation for each
non-singular boundary conditions over the finite interval.
Such equations are part of the NAEs that is resolved to

provide the coefficients of the Padé approximant. There-
fore, the resulting modified Padé expression fulfils all the
boundary conditions.
Padé approximation (27) of DAEs problem (21) exhib-

ited highly accurate results for a long period of time as
depicted in Figure 2 and Table 4. The differential-algebraic
nonlinear problems are of relevance on several fields
of science, including microelectronics and chemistry. In
addition, there is not any standard analytical method to
solve this type of equations, this is what it makes the
Padé method in an attractive tool to obtain approximate
solutions for DAEs problems. Furthermore, the solution
procedure of (21) shows that is possible - potentially - to
approximate a wide variety of problems containing several
variables.
The accuracy of approximations (33) and (35) for the

quadratic Riccati problem (28) is depicted in Figure 1.
Moreover, we have suggested a strategy to increase the
domain of convergence of the Padé method by changing
its expansion point. As depicted in Figure 1, the approxi-
mation (35) obtained by expanding at t = 1.7 is far more
accurate than (33) obtained by expanding at t = 1.7. It
is important to notice that the expansion point was arbi-
trary choose for this case study; therefore, further work
is required to deduce a systematic algorithm to choose
optimal expansion points. Furthermore, in (Abbasbandy
2006) was reported a power series solution for the same
equation with poor convergence, making necessary to
solve the problem by a multi-stage version of HPM
method. The advantage of our solution, in this case, is that
we do not need to use a complicated segmented method;
therefore, this approach generates simpler solutions. In
addition, in (Tsai and Chen 2010) was reported the combi-
nation of Laplace Adomian Decomposition Method with
Padé (LADM-Padé) of order [ 13/12] to obtain a similar
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Table 2 Comparison between (20), exact solution (Erdogan and Ozis 2011; Lin et al. 2008), and other reported approximate solutions

x Exact This work HPM ADM HPM HPM HAM LDTM
(Erdogan and Ozis 2011; Lin et al. 2008) (20) (Vazquez-Leal et al. 2012c) (Deeba et al. 2000) (Feng et al. 2007) (Mirmoradia et al. 2009) (Hassana and El-Tawil 2011) (Khuri 2003)

0.1 0.0959443493 0.0959443493 0.0959443155 0.0959383534 0.0959395656 0.095948026 0.0959446190 0.0959443520

0.2 0.1921287477 0.1921287477 0.1921286848 0.1921180592 0.1921193244 0.192135797 0.1921292845 0.1921287539

0.3 0.2887944009 0.2887944009 0.2887943176 0.2887803297 0.2887806940 0.288804238 0.2887952148 0.2887944107

0.4 0.3861848464 0.3861848464 0.3861847539 0.3861687095 0.3861675428 0.386196642 0.3861859313 0.3861848612

0.5 0.4845471647 0.4845471647 0.4845470753 0.4845302901 0.4845274183 0.4845599 0.4845485110 0.4845471832

0.6 0.5841332484 0.5841332484 0.5841331729 0.5841169798 0.5841127822 0.584145785 0.5841348222 0.5841332650

0.7 0.6852011483 0.6852011483 0.6852010943 0.6851868451 0.6851822495 0.685212297 0.6852028604 0.6852011675

0.8 0.7880165227 0.7880165227 0.7880164925 0.7880055691 0.7880018367 0.788025104 0.7880181729 0.7880165463

0.9 0.8928542161 0.8928542161 0.8928542059 0.8928480234 0.8928462193 0.892859085 0.8928553997 0.8928542363

Order [12/12] 2 6 2 2 6 3

A.A.R.E. 0 1.83327e(-07) 3.47802e(-05) 3.57932e(-05) 2.44418e(-05) 2.51374e(-06) 3.10957e(-08)

Calculated for n = 0.5.
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Table 3 Comparison between (20), exact solution (Erdogan and Ozis 2011; Lin et al. 2008), and other reported approximate solutions

x Exact This work HPM ADM HPM HPM HAM LDTM
(Erdogan and Ozis 2011) (20) (Vazquez-Leal et al. 2012c) (Deeba et al. 2000) (Feng et al. 2007) (Mirmoradia et al. 2009) (Hassana and El-Tawil 2011) (Khuri 2003)

0.1 0.0846612565 0.0846612565 0.08466075858 0.084248760 0.0843817004 0.084934415 0.0846732692 0.08466308972

0.2 0.1701713582 0.1701713582 0.1701704581 0.169430700 0.1696207644 0.170697546 0.1701954538 0.1701750442

0.3 0.2573939080 0.2573939081 0.2573927827 0.256414500 0.2565929224 0.258133224 0.2574302342 0.2573994845

0.4 0.3472228551 0.3472228551 0.3472217324 0.346085720 0.3462107378 0.348116627 0.3472715981 0.3472303763

0.5 0.4405998351 0.4405998352 0.4405989511 0.439401985 0.4394422743 0.44157274 0.4406610140 0.4406093753

0.6 0.5385343980 0.5385343981 0.5385339413 0.537365700 0.5373300622 0.539498234 0.5386072529 0.5385460046

0.7 0.6421286091 0.6421286092 0.6421286573 0.641083800 0.6410104651 0.642987984 0.7526899495 0.6421421393

0.8 0.7526080939 0.7526080940 0.7526085475 0.751788000 0.7517335467 0.753267551 0.7526899495 0.7526226886

0.9 0.8713625196 0.8713625198 0.8713630450 0.870908700 0.8708835371 0.871733059 0.8714249118 0.8713748860

Order [12/12] 2 6 2 2 6 3

A.A.R.E. 1.46588e(-10) 2.54568e(-06) 0.002714577 0.002320107 0.002044737 0.019244326 2.05e(-05)

Calculated for n = 1.
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(a)

(b)
Figure 2 Exact solution (22) (solid circles) of DAEs (21) and Padé approximation (27) (solid line): a) y(t) and b) z(t).

Table 4 Relative error (R.E.) of exact solution (22) versus Padé approximation (27)

t Exact y(t) Exact z(t) R.E. y(t) of (27) R.E. z(t) of (27)

-10 -0.2086321515 -0.9779941847 0.09330825406 0.09330825406

-9 -0.9356781623 -0.3528546112 0.002548752664 0.002548752664

-8 -0.8024659858 0.5966978646 0.0002522953745 0.0002522953745

-7 0.0685297173 0.9976490755 0.0001597267828 0.0001597267828

-6 0.8765195143 0.4813663272 3.803747675e-07 3.803747675e-07

-5 0.8786413122 -0.4774824024 5.388747443e-09 5.388747443e-09

-4 0.0729443397 -0.9973360132 3.131783529e-10 3.131783529e-10

-3 -0.7998173223 -0.6002434930 2.587566848e-14 2.587566848e-14

-2 -0.9372306267 0.3487101265 9.922514670e-19 9.922514670e-19

-1 -0.2129584152 0.9770612639 1.391674918e-25 1.391674918e-25

0 0.7071067812 0.7071067812 0.0000000000 0.0000000000

1 0.9770612639 -0.2129584152 2.900333665e-26 2.900333665e-26

2 0.3487101265 -0.9372306267 2.436171789e-18 2.436171789e-18

3 -0.6002434930 -0.7998173223 3.003755589e-14 3.003755589e-14

4 -0.9973360132 0.0729443397 1.897834931e-11 1.897834931e-11

5 -0.4774824024 0.8786413122 7.783182416e-09 7.783182416e-09

6 0.4813663272 0.8765195143 5.122538684e-07 5.122538684e-07

7 0.9976490755 0.0685297173 7.591788287e-06 7.591788287e-06

8 0.5966978646 -0.8024659858 0.0002175967642 0.0002175967642

9 -0.3528546112 -0.9356781623 0.003968289586 0.003968289586

10 -0.9779941847 -0.2086321515 0.01052925646 0.01052925646
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result to our [ 4/4] order Padé solution. Furthermore, in
(Abbasbandy 2007) was reported a power series solutions
with short domain of convergence. A HAM solution in
terms of exponential expressions was reported in (Tan
and Abbasbandy 2008), presenting a high accurate solu-
tion with a larger domain than the proposed solution; for
this case, we can increase the order of the Padé approxi-
mation to obtain a good agreement with HAM solution.
Moreover, in order to show the advantage of the proposed
method, we calculated 250 terms of the power series solu-
tion using the well established series method (using the
command dsolve of Maple 16), resulting a poor region
of convergence, followed by (33). Finally, as depicted in
Figure 1, the best domain of convergence was obtained
from the Padé approximant (35) due to the expansion
point change.
The direct application of the Padé approximant

to obtain rational solutions of nonlinear differential
equations circumvent the old requirement of using Taylor
series method (Vazquez-Leal et al. 2014), HPM, VIM,
HAM, DTM, PSM, ADM and others, as tools to obtain a
power series solutions to post-process later by the appli-
cation Padé approximant. Therefore, this new straight-
forward methodology reduce the computational effort
producing good results.
In general terms, we know from literature (Bararnia

et al. 2012; Guerrero et al. 2013; Torabi and Yaghoobi
2011; Vazquez-Leal and Guerrero 2013) that larger values
for M and L, can lead to better results for Padé approx-
imant, this considering that we count in advance with a
suitable power series (large enough) obtained using an
extra approximative method as aforementioned. Then,
our proposal has a strong advantage because we do
not require a power series to post-process with Padé
approximant, because the method consist in the direct
application of Padé. However, a systematic procedure to
obtain the optimal order [ L/M] is still a pending issue
to study in a future research derived from this paper.
Finally, in the present study, we restricted the research to
nonsingular initial conditions and Dirichlet finite inter-
val boundary conditions; nonetheless, further work is
required to deal with singular initial condition problems,
Neumann boundary conditions, infinity boundary condi-
tions, among others.

6 Conclusions
This work presented the direct application of Padé
method as a technique with high potential to solve non-
linear differential equations. Also, a comparison between
the results of applying the proposed procedure and
other semi-analytical was shown. The results showed that
Padé is a powerful method to solve different nonlinear
equations like the ones for: boundary value problems,
differential-algebraic problems, and asymptotic problems.

The method provided better results than many of the
most used methods like: HPM, ADM, HAM, DTM, VIM,
PSM, among others. Finally, further research should be
performed to solve other kind of problems as: nonlin-
ear fractional/partial differential equations, Pantograph
equations, among others.
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