185 research outputs found

    Errata

    Get PDF

    Hypophagia induced by salmon calcitonin, but not by amylin, is partially driven by malaise and is mediated by CGRP neurons

    Full text link
    Objective: The behavioral mechanisms and the neuronal pathways mediated by amylin and its long-acting analog sCT (salmon calcitonin) are not fully understood and it is unclear to what extent sCT and amylin engage overlapping or distinct neuronal subpopulations to reduce food intake. We here hypothesize that amylin and sCT recruit different neuronal population to mediate their anorectic effects. Methods: Viral approaches were used to inhibit calcitonin gene-related peptide (CGRP) lateral parabrachial nucleus (LPBN) neurons and assess their role in amylin's and sCT's ability to decrease food intake in mice. In addition, to test the involvement of LPBN CGRP neuropeptidergic signaling in the mediation of amylin and sCT's effects, a LPBN site-specific knockdown was performed in rats. To deeper investigate whether the greater anorectic effect of sCT compared to amylin is due do the recruitment of additional neuronal pathways related to malaise multiple and distinct animal models tested whether amylin and sCT induce conditioned avoidance, nausea, emesis, and conditioned affective taste aversion. Results: Our results indicate that permanent or transient inhibition of CGRP neurons in LPBN blunts sCT-, but not amylin-induced anorexia and neuronal activation. Importantly, sCT but not amylin induces behaviors indicative of malaise including conditioned affective aversion, nausea, emesis, and conditioned avoidance; the latter mediated by CGRPLPBN neurons. Conclusions: Together, the present study highlights that although amylin and sCT comparably decrease food intake, sCT is distinctive from amylin in the activation of anorectic neuronal pathways associated with malaise

    Spatial weights : constructing weight-compatible exchange matrices from proximity matrices

    Get PDF
    Exchange matrices represent spatial weights as symmetric probability distributions on pairs of regions, whose margins yield regional weights, generally well-specified and known in most contexts. This contribution proposes a mechanism for constructing exchange matrices, derived from quite general symmetric proximity matrices, in such a way that the margin of the exchange matrix coincides with the regional weights. Exchange matrices generate in turn diffusive squared Euclidean dissimilarities, measuring spatial remoteness between pairs of regions. Unweighted and weighted spatial frameworks are reviewed and compared, regarding in particular their impact on permutation and normal tests of spatial autocorrelation. Applications include tests of spatial autocorrelation with diagonal weights, factorial visualization of the network of regions, multivariate generalizations of Moran's I, as well as "landscape clustering", aimed at creating regional aggregates both spatially contiguous and endowed with similar features

    Prohormone convertase 1/3 deficiency causes obesity due to impaired proinsulin processing

    Full text link
    Defective insulin processing is associated with obesity and diabetes. Prohormone convertase 1/3 (PC1/3) is an endopeptidase required for the processing of neurotransmitters and hormones. PC1/3 deficiency and genome-wide association studies relate PC1/3 with early onset obesity. Here, we find that deletion of PC1/3 in obesity-related neuronal cells expressing proopiomelanocortin mildly and transiently change body weight and fail to produce a phenotype when targeted to Agouti-related peptide- or nestin-expressing tissues. In contrast, pancreatic β cell-specific PC1/3 ablation induces hyperphagia with consecutive obesity despite uncontrolled diabetes with glucosuria. Obesity develops not due to impaired pro-islet amyloid polypeptide processing but due to impaired insulin maturation. Proinsulin crosses the blood-brain-barrier but does not induce central satiety. Accordingly, insulin therapy prevents hyperphagia. Further, islet PC1/3 expression levels negatively correlate with body mass index in humans. In this work, we show that impaired PC1/3-mediated proinsulin processing, as observed in human prediabetes, promotes hyperphagic obesity

    Effectiveness of intensive group and individual interventions for smoking cessation in primary health care settings: a randomized trial

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>Primary: To compare the effectiveness of intensive group and individual interventions for smoking cessation in a primary health care setting; secondary: to identify the variables associated with smoking cessation.</p> <p>Methods</p> <p>Three-pronged clinical trial with randomisation at the individual level. We performed the following: an intensive individual intervention (III), an intensive group intervention (IGI) and a minimal intervention (MI). Included in the study were smokers who were prepared to quit smoking. Excluded from the study were individuals aged less than 18 years or with severe mental conditions or terminal illnesses. The outcome measure was continued abstinence at 12 months confirmed through CO-oximetry (CO). The analysis was based on intention to treat.</p> <p>Results</p> <p>In total, 287 smokers were recruited: 81 in the III, 111 in the IGI, and 95 in the MI. Continued abstinence at 12 months confirmed through CO was 7.4% in the III, 5.4% in the IGI, and 1% in the MI. No significant differences were noted between III and MI on the one hand, and between IGI and MI on the other [RR 7.04 (0.9-7.2) and RR 5.1 (0.6-41.9), respectively]. No differences were noted between IGI and III [RR 0.7 (0.2-2.2)]. In multivariate analysis, only overall visit length showed a statistically significant association with smoking cessation.</p> <p>Conclusions</p> <p>The effectiveness of intensive smoking interventions in this study was lower than expected. No statistically significant differences were found between the results of individual and group interventions.</p> <p>Trial registration number</p> <p>ISRCTN32323770</p

    Characterization of the Psychological, Physiological and EEG Profile of Acute Betel Quid Intoxication in Naïve Subjects

    Get PDF
    Betel quid use and abuse is wide spread in Asia but the physiological basis of intoxication and addiction are unknown. In subjects naïve to the habit of betel quid intoxication, the psychological and physiological profile of intoxication has never been reported. We compared the effect of chewing gum or chewing betel quid, and subsequent betel quid intoxication, on psychological assessment, prospective time interval estimation, numerical and character digit span, computerized 2 choice tests and mental tasks such as reading and mathematics with concurrent monitoring of ECG, EEG and face temperature in healthy, non-sleep deprived, male subjects naïve to the habit of chewing betel quid. Betel quid intoxication, dose dependently induced tachycardia (max 30 bpm) and elevated face temperature (0.7°C) (P<0.001) above the effects observed in response to chewing gum (max 12 bpm and 0.3°C) in 12 subjects. Gross behavioral indices of working memory such as numerical or character digit span in 8 subjects, or simple visual-motor performance such as reaction speed or accuracy in a two choice scenario in 8 subjects were not affected by betel quid intoxication. Betel quid intoxication strongly influenced the psychological aspects of perception such as slowing of the prospective perception of passage of a 1 minute time interval in 8 subjects (P<0.05) and perceived increased arousal (P<0.01) and perceived decreased ability to think (P<0.05) in 31 subjects. The EEG spectral profile recorded from mental states associated with open and closed eyes, and mental tasks such as reading and eyes closed mental arithmetic were significantly modified (P<0.05) relative to chewing gum by betel quid intoxication in 10 subjects. The prevalence of betel quid consumption across a range of social and work settings warrants greater investigation of this widespread but largely under researched drug

    Cannabis-Dependence Risk Relates to Synergism between Neuroticism and Proenkephalin SNPs Associated with Amygdala Gene Expression: Case-Control Study

    Get PDF
    BACKGROUND:Many young people experiment with cannabis, yet only a subgroup progress to dependence suggesting individual differences that could relate to factors such as genetics and behavioral traits. Dopamine receptor D2 (DRD2) and proenkephalin (PENK) genes have been implicated in animal studies with cannabis exposure. Whether polymorphisms of these genes are associated with cannabis dependence and related behavioral traits is unknown. METHODOLOGY/PRINCIPAL FINDINGS:Healthy young adults (18-27 years) with cannabis dependence and without a dependence diagnosis were studied (N = 50/group) in relation to a priori-determined single nucleotide polymorphisms (SNPs) of the DRD2 and PENK genes. Negative affect, Impulsive Risk Taking and Neuroticism-Anxiety temperamental traits, positive and negative reward-learning performance and stop-signal reaction times were examined. The findings replicated the known association between the rs6277 DRD2 SNP and decisions associated with negative reinforcement outcomes. Moreover, PENK variants (rs2576573 and rs2609997) significantly related to Neuroticism and cannabis dependence. Cigarette smoking is common in cannabis users, but it was not associated to PENK SNPs as also validated in another cohort (N = 247 smokers, N = 312 non-smokers). Neuroticism mediated (15.3%-19.5%) the genetic risk to cannabis dependence and interacted with risk SNPs, resulting in a 9-fold increase risk for cannabis dependence. Molecular characterization of the postmortem human brain in a different population revealed an association between PENK SNPs and PENK mRNA expression in the central amygdala nucleus emphasizing the functional relevance of the SNPs in a brain region strongly linked to negative affect. CONCLUSIONS/SIGNIFICANCE:Overall, the findings suggest an important role for Neuroticism as an endophenotype linking PENK polymorphisms to cannabis-dependence vulnerability synergistically amplifying the apparent genetic risk

    Role of Serine Racemase in Behavioral Sensitization in Mice after Repeated Administration of Methamphetamine

    Get PDF
    BACKGROUND: The N-methyl-D-aspartate (NMDA) receptors play a role in behavioral abnormalities observed after administration of the psychostimulant, methamphetamine (METH). Serine racemase (SRR) is an enzyme which synthesizes D-serine, an endogenous co-agonist of NMDA receptors. Using Srr knock-out (KO) mice, we investigated the role of SRR on METH-induced behavioral abnormalities in mice. METHODOLOGY/PRINCIPAL FINDINGS: Evaluations of behavior in acute hyperlocomotion, behavioral sensitization, and conditioned place preference (CPP) were performed. The role of SRR on the release of dopamine (DA) in the nucleus accumbens after administration of METH was examined using in vivo microdialysis technique. Additionally, phosphorylation levels of ERK1/2 proteins in the striatum, frontal cortex and hippocampus were examined using Western blot analysis. Acute hyperlocomotion after a single administration of METH (3 mg/kg) was comparable between wild-type (WT) and Srr-KO mice. However, repeated administration of METH (3 mg/kg/day, once daily for 5 days) resulted in behavioral sensitization in WT, but not Srr-KO mice. Pretreatment with D-serine (900 mg/kg, 30 min prior to each METH treatment) did not affect the development of behavioral sensitization after repeated METH administration. In the CPP paradigm, METH-induced rewarding effects were demonstrable in both WT and Srr-KO mice. In vivo microdialysis study showed that METH (1 mg/kg)-induced DA release in the nucleus accumbens of Srr-KO mice previously treated with METH was significantly lower than that of the WT mice previously treated with METH. Interestingly, a single administration of METH (3 mg/kg) significantly increased the phosphorylation status of ERK1/2 in the striatum of WT, but not Srr-KO mice. CONCLUSIONS/SIGNIFICANCE: These findings suggest first, that SRR plays a role in the development of behavioral sensitization in mice after repeated administration of METH, and second that phosphorylation of ERK1/2 by METH may contribute to the development of this sensitization as seen in WT but not Srr-KO mice

    Genetic hitchhiking and resistance evolution to transgenic Bt toxins: insights from the African stalk borer Busseola fusca (Noctuidae)

    Get PDF
    Since transgenic crops expressing Bacillus thuringiensis (Bt) toxins were first released, resistance evolution leading to failure in control of pests populations has been observed in a number of species. Field resistance of the moth Busseola fusca was acknowledged 8 years after Bt maize was introduced in South Africa. Since then, field resistance of this corn borer has been observed at several locations, raising questions about the nature, distribution and dynamics of the resistance trait. Using genetic markers, our study identified four outlier loci clearly associated with resistance. In addition, genetic structure at neutral loci reflected extensive gene flow among populations. A realistically parameterised model suggests that resistance could travel in space at speed of several kilometres a year. Markers at outlier loci delineated a geographic region associated with resistance spread. This was an area of approximately 100 km radius, including the location where resistance was first reported. Controlled crosses corroborated these findings and showed significant differences of progeny survival on Bt plants depending on the origin of the resistant parent. Last, our study suggests diverse resistance mutations, which would explain the widespread occurrence of resistant larvae in Bt fields across the main area of maize production in South Africa
    corecore