817 research outputs found

    Expression of melanotropin-related genes in goldfish brain, pituitary, and skin in response to background color

    Get PDF
    Poster presentado en el 17th International Congress of Comparative Endocrinology celebrado en Barcelona del 15 al 19 de julio de 2013In teleost fish, body color varies in response to changes in background color. The color is lighter in a white background than in a black background. Melanin- concentrating hormone (MCH) produced in hypothalamiand agouti signaling protein (ASP) in skins turn body color pale by aggregating pigments, while melanocyte-stimulating hormone (MSH) encoded on a proopiomelanocortin (POMC) gene disperses pigments. In the present study, we investigated the effects of a black or white background on expression levels of the genes for the hormonal peptides and corresponding receptors by real time RT-PCR in goldfish (Carassiusauratus).Peer Reviewe

    Eccrine porocarcinoma of the head: An important differential diagnosis in the elderly patient

    Get PDF
    Background: Eccrine porocarcinoma is a rare malignant tumor of the sweat gland, characterized by a broad spectrum of clinicopathologic presentations. Surprisingly, unlike its benign counterpart eccrine poroma, eccrine porocarcinoma is seldom found in areas with a high density of eccrine sweat glands, like the palms or soles. Instead, eccrine porocarcinoma frequently occurs on the lower extremities, trunk and abdomen, but also on the head, resembling various other skin tumors, as illustrated in the patients described herein. Observations: We report 5 cases of eccrine porocarcinoma of the head. All patients were initially diagnosed as having epidermal or melanocytic skin tumors. Only after histopathologic examination were they classified as eccrine porocarcinoma, showing features of epithelial tumors with abortive ductal differentiation. Characteristic clinical, histopathologic and immunohistochemical findings of eccrine porocarcinomas are illustrated. Conclusion: Eccrine porocarcinomas are potentially fatal adnexal malignancies, in which extensive metastatic dissemination may occur. Porocarcinomas are commonly overlooked, or misinterpreted as squamous or basal cell carcinomas as well as other common malignant and even benign skin tumors. Knowledge of the clinical pattern and histologic findings, therefore, is crucial for an early therapeutic intervention, which can reduce the risk of tumor recurrence and serious complications. Copyright (c) 2008 S. Karger AG, Basel

    The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century

    Get PDF
    Future stratospheric ozone concentrations will be determined both by changes in the concentration of ozone depleting substances (ODSs) and by changes in stratospheric and tropospheric climate, including those caused by changes in anthropogenic greenhouse gases (GHGs). Since future economic development pathways and resultant emissions of GHGs are uncertain, anthropogenic climate change could be a significant source of uncertainty for future projections of stratospheric ozone. In this pilot study, using an "ensemble of opportunity" of chemistry-climate model (CCM) simulations, the contribution of scenario uncertainty from different plausible emissions pathways for ODSs and GHGs to future ozone projections is quantified relative to the contribution from model uncertainty and internal variability of the chemistry-climate system. For both the global, annual mean ozone concentration and for ozone in specific geographical regions, differences between CCMs are the dominant source of uncertainty for the first two-thirds of the 21st century, up-to and after the time when ozone concentrations return to 1980 values. In the last third of the 21st century, dependent upon the set of greenhouse gas scenarios used, scenario uncertainty can be the dominant contributor. This result suggests that investment in chemistry-climate modelling is likely to continue to refine projections of stratospheric ozone and estimates of the return of stratospheric ozone concentrations to pre-1980 levels

    The effect of atmospheric nudging on the stratospheric residual circulation in chemistry–climate models

    Get PDF
    We perform the first multi-model intercomparison of the impact of nudged meteorology on the stratospheric residual circulation using hindcast simulations from the Chemistry–Climate Model Initiative (CCMI). We examine simulations over the period 1980–2009 from seven models in which the meteorological fields are nudged towards a reanalysis dataset and compare these with their equivalent free-running simulations and the reanalyses themselves. We show that for the current implementations, nudging meteorology does not constrain the mean strength of the stratospheric residual circulation and that the inter-model spread is similar, or even larger, than in the free-running simulations. The nudged models generally show slightly stronger upwelling in the tropical lower stratosphere compared to the free-running versions and exhibit marked differences compared to the directly estimated residual circulation from the reanalysis dataset they are nudged towards. Downward control calculations applied to the nudged simulations reveal substantial differences between the climatological lower-stratospheric tropical upward mass flux (TUMF) computed from the modelled wave forcing and that calculated directly from the residual circulation. This explicitly shows that nudging decouples the wave forcing and the residual circulation so that the divergence of the angular momentum flux due to the mean motion is not balanced by eddy motions, as would typically be expected in the time mean. Overall, nudging meteorological fields leads to increased inter-model spread for most of the measures of the mean climatological stratospheric residual circulation assessed in this study. In contrast, the nudged simulations show a high degree of consistency in the inter-annual variability in the TUMF in the lower stratosphere, which is primarily related to the contribution to variability from the resolved wave forcing. The more consistent inter-annual variability in TUMF in the nudged models also compares more closely with the variability found in the reanalyses, particularly in boreal winter. We apply a multiple linear regression (MLR) model to separate the drivers of inter-annual and long-term variations in the simulated TUMF; this explains up to ∼75 % of the variance in TUMF in the nudged simulations. The MLR model reveals a statistically significant positive trend in TUMF for most models over the period 1980–2009. The TUMF trend magnitude is generally larger in the nudged models compared to their free-running counterparts, but the intermodel range of trends doubles from around a factor of 2 to a factor of 4 due to nudging. Furthermore, the nudged models generally do not match the TUMF trends in the reanalysis they are nudged towards for trends over different periods in the interval 1980–2009. Hence, we conclude that nudging does not strongly constrain long-term trends simulated by the chemistry–climate model (CCM) in the residual circulation. Our findings show that while nudged simulations may, by construction, produce accurate temperatures and realistic representations of fast horizontal transport, this is not typically the case for the slower zonal mean vertical transport in the stratosphere. Consequently, caution is required when using nudged simulations to interpret the behaviour of stratospheric tracers that are affected by the residual circulation

    Expression of pyrimidine nucleoside phosphorylase mRNA plays an important role in the prognosis of patients with oesophageal cancer

    Get PDF
    To clarify the significance of the expression of pyrimidine nucleoside phosphorylase (PyNPase) mRNA as a predictive factor for the prognosis of patients with oesophageal carcinoma, the PyNPase mRNA in the tumours and normal tissues from 55 resected cases of oesophageal carcinoma was examined by a reverse transcription polymerase chain reaction (RT-PCR). As a result, a positive correlation was observed between the tumour/normal (T/N) ratio of the expression of PyNPase mRNA by RT-PCR and that of the enzyme activity of PyNPase based on the findings of an enzyme linked immunosolvent assay (r = 0.594, P = 0.009). The T/N ratio of the expression of PyNPase mRNA was significantly higher in the cases with lymph vessel invasion (P = 0.013), lymph node metastasis (P = 0.0016), and an advanced stage of the disease (P = 0.021) than those without these factors. The patients with a higher T/N ratio of PyNPase mRNA showed significantly worse prognosis than those with a lower T/N ratio (P = 0.023 with log-rank tests). A multivariate analysis for the cumulative survival rates revealed that a high T/N ratio of the expression of PyNPase mRNA was independently related to a poor prognosis. These findings suggested that the determination of PyNPase mRNA by RT-PCR thus appears to be a new useful parameter for identifying both a poor prognosis and a highly malignant potential of oesophageal carcinoma. © 1999 Cancer Research Campaig

    A broad distribution of the alternative oxidase in microsporidian parasites

    Get PDF
    Microsporidia are a group of obligate intracellular parasitic eukaryotes that were considered to be amitochondriate until the recent discovery of highly reduced mitochondrial organelles called mitosomes. Analysis of the complete genome of Encephalitozoon cuniculi revealed a highly reduced set of proteins in the organelle, mostly related to the assembly of ironsulphur clusters. Oxidative phosphorylation and the Krebs cycle proteins were absent, in keeping with the notion that the microsporidia and their mitosomes are anaerobic, as is the case for other mitosome bearing eukaryotes, such as Giardia. Here we provide evidence opening the possibility that mitosomes in a number of microsporidian lineages are not completely anaerobic. Specifically, we have identified and characterized a gene encoding the alternative oxidase (AOX), a typically mitochondrial terminal oxidase in eukaryotes, in the genomes of several distantly related microsporidian species, even though this gene is absent from the complete genome of E. cuniculi. In order to confirm that these genes encode functional proteins, AOX genes from both A. locustae and T. hominis were over-expressed in E. coli and AOX activity measured spectrophotometrically using ubiquinol-1 (UQ-1) as substrate. Both A. locustae and T. hominis AOX proteins reduced UQ-1 in a cyanide and antimycin-resistant manner that was sensitive to ascofuranone, a potent inhibitor of the trypanosomal AOX. The physiological role of AOX microsporidia may be to reoxidise reducing equivalents produced by glycolysis, in a manner comparable to that observed in trypanosome

    Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models

    Get PDF
    The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling

    Induction of insulin-like growth factor 2 expression in a mesenchymal cell line co-cultured with an ameloblast cell line

    Get PDF
    Various growth factors have been implicated in the regulation of cell proliferation and differentiation during tooth development. It has been unclear if insulin-like growth factors (IGFs) participate in the epithelium–mesenchyme interactions of tooth development. We previously produced three-dimensional sandwich co-culture systems (SW) containing a collagen membrane that induce the differentiation of epithelial cells. In the present study, we used the SW system to analyze the expression of IGFs and IGFRs. We demonstrate that IGF2 expression in mesenchymal cells was increased by SW. IGF1R transduces a signal; however, IGF2R does not transduce a signal. Recombinant IGF2 induces IGF1R and IGF2R expression in epithelial cells. IGF1R expression is increased by SW; however, IGF2R expression did not increase by SW. Thus, IGF2 signaling works effectively in SW. These results suggest that IGF signaling acts through the collagen membrane on the interaction between the epithelium and mesenchyme. In SW, other cytokines may be suppressed to induce IGF2R induction. Our results suggest that IGF2 may play a role in tooth differentiation
    • …
    corecore