936 research outputs found

    Effect of thiamethoxam on cockroach locomotor activity is associated with its metabolite clothianidin

    Get PDF
    BACKGROUND: In the present study, the effect of thiamethoxam and clothianidin on the locomotor activity of American cockroach, Periplaneta americana (L.), was evaluated. Because it has been proposed that thiamethoxam is metabolised to clothianidin, high-performance liquid chromatography coupled with mass spectrometry was used to evaluate the amount of clothianidin on thiamethoxam-treated cockroaches. RESULTS: One hour after neonicotinoid treatment, the time spent in the open-field-like apparatus significantly increased, suggesting a decrease in locomotor activity. The percentage of cockroaches displaying locomotor activity was significantly reduced 1 h after haemolymph application of 1 nmol g(-1) neonicotinoid, while no significant effect was found after topical and oral administration. However, at 24 and 48 h, all neonicotinoids were able to reduce locomotor activity, depending on their concentrations and the way they were applied. Interestingly, it was found that thiamethoxam was converted to clothianidin 1 h after application, but the amount of clothianidin did not rise proportionately to thiamethoxam, especially after oral administration. CONCLUSION: The data suggest that the effect of thiamethoxam on cockroach locomotor activity is due in part to clothianidin action because (1) thiamethoxam levels remained persistent 48 h after application and (2) the amount of clothianidin in cockroach tissues was consistent with the toxicity of thiamethoxam

    Traffic of Molecular Motors

    Full text link
    Molecular motors perform active movements along cytoskeletal filaments and drive the traffic of organelles and other cargo particles in cells. In contrast to the macroscopic traffic of cars, however, the traffic of molecular motors is characterized by a finite walking distance (or run length) after which a motor unbinds from the filament along which it moves. Unbound motors perform Brownian motion in the surrounding aqueous solution until they rebind to a filament. We use variants of driven lattice gas models to describe the interplay of their active movements, the unbound diffusion, and the binding/unbinding dynamics. If the motor concentration is large, motor-motor interactions become important and lead to a variety of cooperative traffic phenomena such as traffic jams on the filaments, boundary-induced phase transitions, and spontaneous symmetry breaking in systems with two species of motors. If the filament is surrounded by a large reservoir of motors, the jam length, i.e., the extension of the traffic jams is of the order of the walking distance. Much longer jams can be found in confined geometries such as tube-like compartments.Comment: 10 pages, latex, uses Springer styles (included), to appear in the Proceedings of "Traffic and Granular Flow 2005

    Mechanical loading of stem cells for improvement of transplantation outcome in a model of acute myocardial infarction: The role of loading history

    Get PDF
    Stem cell therapy for tissue repair is a rapidly evolving field and the factors that dictate the physiological responsiveness of stem cells remain under intense investigation. In this study we hypothesized that the mechanical loading history of muscle-derived stem cells (MDSCs) would significantly impact MDSC survival, host tissue angiogenesis, and myocardial function after MDSC transplantation into acutely infarcted myocardium. Mice with acute myocardial infarction by permanent left coronary artery ligation were injected with either nonstimulated (NS) or mechanically stimulated (MS) MDSCs. Mechanical stimulation consisted of stretching the cells with equibiaxial stretch with a magnitude of 10% and frequency of 0.5Hz. MS cell-transplanted hearts showed improved cardiac contractility, increased numbers of host CD31+ cells, and decreased fibrosis, in the peri-infarct region, compared to the hearts treated with NS MDSCs. MS MDSCs displayed higher vascular endothelial growth factor expression than NS cells in vitro. These findings highlight an important role for cyclic mechanical loading preconditioning of donor MDSCs in optimizing MDSC transplantation for myocardial repair. © 2012, Mary Ann Liebert, Inc

    Genome-Wide Mapping of DNA Strand Breaks

    Get PDF
    Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed “damaged DNA immunoprecipitation” (dDIP), uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL) to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage

    Impact of bus electrification on carbon emissions: the case of Stockholm

    Get PDF
    This paper focuses on the potential impact of various options for decarbonization of public bus transport in Stockholm, with particular attention to electrification. An optimization model is used to locate electric bus chargers and to estimate the associated carbon emissions, using a life cycle perspective and various implementation scenarios. Emissions associated with fuels and batteries of electric powertrains are considered to be the two main factors affecting carbon emissions. The results show that, although higher battery capacities could help electrify more routes of the city's bus network, this does not necessarily lead to a reduction of the total emissions. The results show the lowest life cycle emissions occurring when electric buses use batteries with a capacity of 120 kWh. The fuel choices significantly influence the environmental impact of a bus network. For example, the use of electricity is a better choice than first generation biofuels from a carbon emission perspective. However, the use of second-generation biofuels, such as Hydrotreated Vegetable Oil (HVO), can directly compete with the Nordic electricity mix. Among all fuel options, certified renewable electricity has the lowest impact. The analysis also shows that electrification could be beneficial for reduction of local pollutants in the Stockholm inner city; however, the local emissions of public transport are much lower than emissions from private transport

    Synthesis and characterization of polymers for nonlinear optical applications

    Get PDF
    International audienceA difunctional NLO Azo-Dye chromophore has been synthesized and polymerization has been performed with a comonomer bearing a side-chain epoxy group. Deposition of the polymer on glass substrates was performed by spin-coating, resulting in uniform films up to 2 µm thickness. The orientation of the chromophore was performed under a " pin-to-plane " positive corona discharge followed by a heat-treatment in order to obtain reticulation of the films. Molecular orientation has been investigated using UV-Vis. and Raman spectroscopy. Poling of the films results in a decay of absorbency as well as in a blue shift of the spectrum. At the same time, the 1600 cm-1 band disappears from the Raman spectra, indicating orientation of the chromophores. Cross-linking has been studied by FTIR and all-optical poling and showed an improved stability of the electro-optic thin films

    Dynamic Merge of the Global and Local Models for Sustainable Land Use Planning with Regard for Global Projections from GLOBIOM and Local Technical–Economic Feasibility and Resource Constraints

    Get PDF
    In order to conduct research at required spatial resolution, we propose a model fusion involving interlinked calculations of regional projections by the global dynamic model GLOBIOM (Global Biosphere Management Model) and robust dynamic downscaling model, based on cross-entropy principle, for deriving spatially resolved projections. The proposed procedure allows incorporating data from satellite images, statistics, expert opinions, as well as data from global land use models. In numerous case studies in China and Ukraine, the approach allowed to estimate local land use and land use change projections corresponding to real trends and expectations. The disaggregated data and projections were used in national models for planning sustainable land use and agricultural development

    Synthetic Protocells Interact with Viral Nanomachinery and Inactivate Pathogenic Human Virus

    Get PDF
    We present a new antiviral strategy and research tool that could be applied to a wide range of enveloped viruses that infect human beings via membrane fusion. We test this strategy on two emerging zoonotic henipaviruses that cause fatal encephalitis in humans, Nipah (NiV) and Hendra (HeV) viruses. In the new approach, artificial cell-like particles (protocells) presenting membrane receptors in a biomimetic manner were developed and found to attract and inactivate henipavirus envelope glycoprotein pseudovirus particles, preventing infection. The protocells do not accumulate virus during the inactivation process. The use of protocells that interact with, but do not accumulate, viruses may provide significant advantages over current antiviral drugs, and this general approach may have wide potential for antiviral development

    Microtubule length dependence of motor traffic in cells

    Full text link
    In living cells, motor proteins, such as kinesin and dynein can move processively along microtubule (MT), and also detach from or attach to MT stochastically. Experiments have found that, the traffic of motor might be jammed, and various theoretical models have been designed to understand this traffic jam phenomenon. But previous studies mainly focus on motor attachment/detachment rate dependent properties. Recent experiment of Leduc {\it et al.} found that the traffic jam formation of motor protein kinesin depends also on the length of MT [Proc. Natl. Acad. Sci. U.S.A. {\bf 109}, 6100-6105 (2012)]. In this study, the MT length dependent properties of motor traffic will be analyzed. We found that MT length has one {\it critical value} NcN_c, traffic jam occurs only when MT length N>NcN>N_c. The jammed length of MT increases with total MT length, while the non-jammed MT length might not change monotonically with the total MT length. The critical value NcN_c increases with motor detachment rate from MT, but decreases with motor attachment rate to MT
    • …
    corecore