514 research outputs found
Spin-flip processes and ultrafast magnetization dynamics in Co - unifying the microscopic and macroscopic view of femtosecond magnetism
The femtosecond magnetization dynamics of a thin cobalt film excited with
ultrashort laser pulses has been studied using two complementary pump-probe
techniques, namely spin-, energy- and time-resolved photoemission and
time-resolved magneto-optical Kerr effect. Combining the two methods it is
possible to identify the microscopic electron spin-flip mechanisms responsible
for the ultrafast macroscopic magnetization dynamics of the cobalt film. In
particular, we show that electron-magnon excitation does not affect the overall
magnetization even though it is an efficient spin-flip channel on the sub-200
fs timescale. Instead we find experimental evidence for the relevance of
Elliott-Yafet type spin-flip processes for the ultrafast demagnetization taking
place on a time scale of 300 fs.Comment: 12 pages, 3 figures; accepted by Physical Review Letter
Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death.
Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death. Reductions in mitochondrial pyruvate uptake do not compromise cellular energy metabolism, suggesting neuronal metabolic flexibility. Rather, MPC inhibition rewires mitochondrial substrate metabolism to preferentially increase reliance on glutamate to fuel energetics and anaplerosis. Mobilizing the neuronal glutamate pool for oxidation decreases the quantity of glutamate released upon depolarization and, in turn, limits the positive-feedback cascade of excitotoxic neuronal injury. The finding links mitochondrial pyruvate metabolism to glutamatergic neurotransmission and establishes the MPC as a therapeutic target to treat neurodegenerative diseases characterized by excitotoxicity
Shape of primary proton spectrum in multi-TeV region from data on vertical muon flux
It is shown, that primary proton spectrum, reconstructed from sea-level and
underground data on muon spectrum with the use of QGSJET 01, QGSJET II, NEXUS
3.97 and SIBYLL 2.1 interaction models, demonstrates not only model-dependent
intensity, but also model-dependent form. For correct reproduction of muon
spectrum shape primary proton flux should have non-constant power index for all
considered models, except SIBYLL 2.1, with break at energies around 10-15 TeV
and value of exponent before break close to that obtained in ATIC-2 experiment.
To validate presence of this break understanding of inclusive spectra behavior
in fragmentation region in p-air collisions should be improved, but we show,
that it is impossible to do on the basis of the existing experimental data on
primary nuclei, atmospheric muon and hadron fluxes.Comment: Submitted to Phys. Rev.
Intruder bands and configuration mixing in the lead isotopes
A three-configuration mixing calculation is performed in the context of the
interacting boson model with the aim to describe recently observed collective
bands built on low-lying states in neutron-deficient lead isotopes. The
configurations that are included correspond to the regular, spherical states as
well as two-particle two-hole and four-particle four-hole excitations across
the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1
in this revised versio
Beta-Delayed fission of 230Am
The exotic decay process of β-delayed fission (βDF) has been studied in the neutron-deficient isotope Am230. The Am230 nuclei were produced in the complete fusion reaction Pb207(Al27,4n)Am230 and separated by using the GARIS gas-filled recoil ion separator. A lower limit for the βDF probability PβDF(Am230)>0.30 was deduced, which so far is the highest value among all known βDF nuclei. The systematics of βDF in the region of Am230 will be discussed
Large-Scale Sidereal Anisotropy of Galactic Cosmic-Ray Intensity Observed by the Tibet Air Shower Array
We present the large-scale sidereal anisotropy ofgalactic cosmic-ray
intensity in the multi-TeV region observed with the Tibet-IIIair shower array
during the period from 1999 through 2003. The sidereal daily variation of
cosmic rays observed in this experiment shows an excess of relative intensity
around hours local sidereal time, as well as a deficit around 12
hours local sidereal time. While the amplitude of the excess is not significant
when averaged over all declinations, the excess in individual declinaton bands
becomes larger and clearer as the viewing direction moves toward the south. The
maximum phase of the excess intensity changes from 7 at the northern
hemisphere to 4 hours at the equatorial region. We also show that both
the amplitude and the phase of the first harmonic vector of the daily variation
are remarkably independent of primary energy in the multi-TeV region. This is
the first result determining the energy and declination dependences of the full
24-hour profiles of the sidereal daily variation in the multi-TeV region with a
single air shower experiment.Comment: 13 pages, 3 figures, 1 table. Accepted for publication in ApJ
On inconsistency of experimental data on primary nuclei spectra with sea level muon intensity measurements
For the first time a complete set of the most recent direct data on primary
cosmic ray spectra is used as input into calculations of muon flux at sea level
in wide energy range GeV. Computations have been performed
with the CORSIKA/QGSJET and CORSIKA/VENUS codes. The comparison of the obtained
muon intensity with the data of muon experiments shows, that measurements of
primary nuclei spectra conform to sea level muon data only up to several tens
of GeV and result in essential deficit of muons at higher energies. As it
follows from our examination, uncertainties in muon flux measurements and in
the description of nuclear cascades development are not suitable to explain
this contradiction, and the only remaining factor, leading to this situation,
is underestimation of primary light nuclei fluxes. We have considered
systematic effects, that may distort the results of the primary cosmic ray
measurements with the application of the emulsion chambers. We suggest, that
re-examination of these measurements is required with the employment of
different hadronic interaction models. Also, in our point of view, it is
necessary to perform estimates of possible influence of the fact, that sizable
fraction of events, identified as protons, actually are antiprotons. Study of
these cosmic ray component begins to attract much attention, but today nothing
definite is known for the energies GeV. In any case, to realize whether
the mentioned, or some other reasons are the sources of disagreement of the
data on primaries with the data on muons, the indicated effects should be
thoroughly analyzed
A proposed reaction channel for the synthesis of the superheavy nucleus Z = 109
We apply a statistical-evaporation model (HIVAP) to calculate the cross
sections of superheavy elements, mainly about actinide targets and compare with
some available experimental data. A reaction channel Si + Am is
proposed for the synthesis of the element Z = 109 and the cross section is
estimated.Comment: 4 pages, 2 figures, 2 tables; two typos are corrected in Ref. [12]
and [19
β-delayed fission and α decay of At196
A nuclear-decay spectroscopy study of the neutron-deficient isotope At196 is reported where an isotopically pure beam was produced using the selective Resonance Ionization Laser Ion Source and On-Line Isotope Mass Separator (CERN). The fine-structure α decay of At196 allowed the low-energy excited states in the daughter nucleus Bi192 to be investigated. A β-delayed fission study of At196 was also performed. A mixture of symmetric and asymmetric fission-fragment mass distributions of the daughter isotope Po196 (populated by β decay of At196) was deduced based on the measured fission-fragment energies. A βDF probability PβDF(At196)=9(1)×10−5 was determined
- …
