106 research outputs found

    Characteristics of pncA mutations in multidrug-resistant tuberculosis in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyrazinamide (PZA) is an important first-line drug in multidrug-resistant tuberculosis (MDRTB) treatment. However, the unreliable results obtained from traditional susceptibility testing limits its usefulness in clinical settings. The detection of <it>pncA </it>gene mutations is a potential surrogate of PZA susceptibility testing, especially in MDRTB isolates. The impact of genotypes of <it>M. tuberculosis </it>in <it>pncA </it>gene mutations also remains to be clarified.</p> <p>Methods</p> <p>MDRTB isolates were collected from six hospitals in Taiwan from January 2007 to December 2009. <it>pncA </it>gene sequencing, pyrazinamidase activity testing, and spoligotyping were performed on all of the isolates. PZA susceptibility was determined by the BACTEC MGIT 960 PZA method. The sensitivity and specificity of <it>pncA </it>gene analysis were estimated based on the results of PZA susceptibility testing.</p> <p>Results</p> <p>A total of 66 MDRTB isolates, including 37 Beijing and 29 non-Beijing strains, were included for analysis. Among these isolates, 36 (54.5%) were PZA-resistant and 30 (45.5%) were PZA-susceptible. The PZA-resistant isolates were more likely to have concomitant resistance to ethambutol and streptomycin. Thirty-seven mutation types out of 30 isolates were identified in the <it>pncA </it>gene, and most of them were point mutations. The sensitivities of <it>pncA </it>gene sequencing for PZA susceptibility in overall isolates, Beijing and non-Beijing strains were 80.6%, 76.2%, and 86.7% respectively, and the specificities were 96.7%, 93.8%, and 100% respectively.</p> <p>Conclusions</p> <p>More than half of the MDRTB isolates in this study are PZA-resistant. Analysis of <it>pncA </it>gene mutations helped to identify PZA-susceptible MDRTB isolates, especially in non-Beijing strains.</p

    Production of Inactivated Influenza H5N1 Vaccines from MDCK Cells in Serum-Free Medium

    Get PDF
    BACKGROUND: Highly pathogenic influenza viruses pose a constant threat which could lead to a global pandemic. Vaccination remains the principal measure to reduce morbidity and mortality from such pandemics. The availability and surging demand for pandemic vaccines needs to be addressed in the preparedness plans. This study presents an improved high-yield manufacturing process for the inactivated influenza H5N1 vaccines using Madin-Darby canine kidney (MDCK) cells grown in a serum-free (SF) medium microcarrier cell culture system. PRINCIPAL FINDING: The current study has evaluated the performance of cell adaptation switched from serum-containing (SC) medium to several commercial SF media. The selected SF medium was further evaluated in various bioreactor culture systems for process scale-up evaluation. No significant difference was found in the cell growth in different sizes of bioreactors studied. In the 7.5 L bioreactor runs, the cell concentration reached to 2.3 × 10(6) cells/mL after 5 days. The maximum virus titers of 1024 Hemagglutinin (HA) units/50 ”L and 7.1 ± 0.3 × 10(8) pfu/mL were obtained after 3 days infection. The concentration of HA antigen as determined by SRID was found to be 14.1 ”g/mL which was higher than those obtained from the SC medium. A mouse immunogenicity study showed that the formalin-inactivated purified SF vaccine candidate formulated with alum adjuvant could induce protective level of virus neutralization titers similar to those obtained from the SC medium. In addition, the H5N1 viruses produced from either SC or SF media showed the same antigenic reactivity with the NIBRG14 standard antisera. CONCLUSIONS: The advantages of this SF cell-based manufacturing process could reduce the animal serum contamination, the cost and lot-to-lot variation of SC medium production. This study provides useful information to manufacturers that are planning to use SF medium for cell-based influenza vaccine production

    Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics

    Get PDF
    A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN

    E. coli Histidine Triad Nucleotide Binding Protein 1 (ecHinT) Is a Catalytic Regulator of D-Alanine Dehydrogenase (DadA) Activity In Vivo

    Get PDF
    Histidine triad nucleotide binding proteins (Hints) are highly conserved members of the histidine triad (HIT) protein superfamily. Hints comprise the most ancient branch of this superfamily and can be found in Archaea, Bacteria, and Eukaryota. Prokaryotic genomes, including a wide diversity of both Gram-negative and Gram-positive bacteria, typically have one Hint gene encoded by hinT (ycfF in E. coli). Despite their ubiquity, the foundational reason for the wide-spread conservation of Hints across all kingdoms of life remains a mystery. In this study, we used a combination of phenotypic screening and complementation analyses with wild-type and hinT knock-out Escherichia coli strains to show that catalytically active ecHinT is required in E. coli for growth on D-alanine as a sole carbon source. We demonstrate that the expression of catalytically active ecHinT is essential for the activity of the enzyme D-alanine dehydrogenase (DadA) (equivalent to D-amino acid oxidase in eukaryotes), a necessary component of the D-alanine catabolic pathway. Site-directed mutagenesis studies revealed that catalytically active C-terminal mutants of ecHinT are unable to activate DadA activity. In addition, we have designed and synthesized the first cell-permeable inhibitor of ecHinT and demonstrated that the wild-type E. coli treated with the inhibitor exhibited the same phenotype observed for the hinT knock-out strain. These results reveal that the catalytic activity and structure of ecHinT is essential for DadA function and therefore alanine metabolism in E. coli. Moreover, they provide the first biochemical evidence linking the catalytic activity of this ubiquitous protein to the biological function of Hints in Escherichia coli

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    Oxidative Stress in Neurodegenerative Diseases

    Get PDF
    • 

    corecore