966 research outputs found

    Prediction of visceral fat area from anthropometric and segmental body composition variables using computed tomography

    Get PDF
    金沢大学教育学部保健体育This study estimated the area of visceral fat at the L4-L5 level (VFAL4-5) measured by computed tomography (CT) from anthropometric and segmental percent fat variables. Subjects were 73 adults (50 men and 23 women) aged 24-78 years. Cross-validation was permormed with another 38 adults (25 men and 13 women) aged 21-80 years. The anthropometric variables examined were height, weight, waist circumference, hip circumference, sagittal diameter, and subcutaneous fat thickness (SFT) at 14 sites. SFT and segmental percent fat were measured by ultrasonography and dualenergy X-ray absorptiometry (DXA), respectively. A combination of suitable predictors of VFAL4-5 was derived by stepwise multiple regression analysis using these variables. A prediction equation was obtained that used seven predictors: sagittal diameter, waist circumference, three subcutaneous thickness variables (subscapula, chest 1 and abdomen), and segmental percent fat at the trunk and left leg (R=0.902, R2 =0.813, SEE=17.5 cm2). In a Bland-Altman procedure, systematic error was not found in the original group but was only found in women in the cross-validation group. The percentage of the SEE of the prediction equation for the mean VFAL4-5 value was 22.5% in the original group and 20.1% in the cross-validation group. Furthermore, the percentages of SD values of the error for the mean VFAL4-5 value were 21.1% in the original group and 22.2% in the cross-validation group. These values were comparable or superior to those in previous studies. This study provides a useful prediction equation for VFAL4-5 from anthropometry and segmental body composition variables. © Springer-Verlag Italia 2007

    Superconductivity of the Sr2Ca12Cu24O41Sr_2 Ca_{12} Cu_{24} O_{41} spin ladder system: Are the superconducting pairing and the spin-gap formation of the same origin?

    Full text link
    Pressure-induced superconductivity in a spin-ladder cuprate Sr2_2Ca12_{12}Cu24_{24}O41_{41} has not been studied on a microscopic level so far although the superconductivity was already discovered in 1996. We have improved high-pressure technique with using a large high-quality crystal, and succeeded in studying the superconductivity using 63^{63}Cu nuclear magnetic resonance (NMR). We found that anomalous metallic state reflecting the spin-ladder structure is realized and the superconductivity possesses a s-wavelike character in the meaning that a finite gap exists in the quasi-particle excitation: At pressure of 3.5GPa we observed two excitation modes in the normal state from the relaxation rate T11T_1^{-1}. One gives rise to an activation-type component in T11T_1^{-1}, and the other TT-linear component linking directly with the superconductivity. This gapless mode likely arises from free motion of holon-spinon bound states appearing by hole doping, and the pairing of them likely causes the superconductivity.Comment: to be published in Phys. Rev. Let

    Age-dependent trajectories differ between within-pair and extra-pair paternity success.

    Get PDF
    Reproductive success is associated with age in many taxa, increasing in early life followed by reproductive senescence. In socially monogamous, but genetically polygamous species, this generates the interesting possibility of differential trajectories of within-pair and extra-pair siring success with age in males. We investigate these relationships simultaneously using within-individual analyses with 13 years of data from an insular house sparrow (Passer domesticus) population. As expected, we found that both within- and extra-pair paternity success increased with age, followed by a senescence-like decline. However, the age trajectories of within- and extra-pair paternity successes differed significantly, with the extra-pair paternity success increasing faster, albeit non-significantly so, in early life, and showing a delayed decline by 1.5 years on average later in life compared to within-pair paternity success. These different trajectories indicate that the two alternative mating tactics should have age-dependent payoffs. Males may partition their reproductive effort between within- and extra-pair matings depending on their current age in order to reap the maximal combined benefit from both strategies. The interplay between these mating strategies and age-specific mortality may explain the variation in rates of extra-pair paternity observed within and between-species. This article is protected by copyright. All rights reserved

    Forgeability of AZ Series Magnesium Alloy produced by Twin Roll Casting

    Full text link
    Plastic forming of magnesium alloy is hardly reported because of its low forgeability. The productions of magnesium alloy are mainly produced by casting. Typical wrought magnesium alloy is AZ31. Magnesium-aluminum alloy indicates maximum elongation when the composition includes 3% aluminum. When the magnesium alloy includes over 3% aluminum, its elongation slightly decreases. Therefore, AZ31 that include 3% aluminum and 1% zinc is generally used for plastic forming. The more increasing aluminum composition, the larger 0.2% proof stress becomes. However its forgeability is decreasing because of precipitation of β phase such as Mg17Al12. It is supposed that the β phase is refined by rapid cooling casting process such as twin roll casting. In this paper, the magnesium alloy thick sheet of AZ91, AZ121 and AZ131 for hot forging, that include 9%, 12% and 13% aluminum composition respectively, was produced by twin roll strip casting process. And the forgeability of high aluminum containing magnesium alloy was investigated by die forging. As a result, it was possible to forge their magnesium alloys

    Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures

    Get PDF
    A dc microhollow cathode discharge (MHCD) plasma was generated inflowing helium gas containing water vapor. The cathode hole diameters were 0.3, 0.7, 1.0, and 2.0 mm, each with a length of 2.0 mm. Emission spectroscopy was carried out to investigate the discharge mode and to determine the plasma parameters. For the 0.3-mm cathode, stable MHCDs in an abnormal glow mode existed at pressures up to 100 kPa, whereas for larger diameters, a plasma was not generated at atmospheric pressure. An analysis of the lineshapes relevant to He at 667.8 nm and to Hα at 656.3 nm implied an electron density and gas temperature of 2 × 1014 cm-3 and 1100 K, respectively, for a 100-kPa discharge in the negative glow region. The dependence of the OH band, and Hα intensities on the discharge current exhibited different behaviors. Specifically, the OH spectrum had a maximum intensity at a certain current, while the H atom intensity kept increasing with the discharge current. This observation implies that a high concentration of OH radicals results in quenching, leading to the production of H atoms via the reaction OH + e- → O + H + e-

    Clinical Usefulness of Multiplex PCR Lateral Flow in MRSA Detection: A Novel, Rapid Genetic Testing Method

    Get PDF
    Methicillin-resistant Staphylococcus aureus (MRSA) with exogenous cassette DNA containing the methicillin-resistant gene mecA (SCCmec) poses a problem as a drug-resistant bacterium responsible for hospital- and community-acquired infections. The frequency of MRSA detection has recently been increasing rapidly in Japan, and SCCmec has also been classified more diversely into types I–V. A rapid test is essential for early diagnosis and treatment of MRSA infections, but detection by conventional methods requires at least two days. The newly developed multiplex PCR lateral flow method allows specific amplification of femA to detect S. aureus, mecA to detect SCCmec, and kdpC to detect SCCmec type II; moreover, PCR products can be evaluated visually in about 3 h. In the present study, we developed a PCR lateral flow method for MRSA using this method and investigated its clinical usefulness in the detection of MRSA. The results showed a diagnostic concordance rate of 91.7% for MRSA and methicillin-susceptible S. aureus between bacteriological examination and PCR lateral flow, and a high level of specificity in PCR lateral flow. In addition, a higher detection rate for S. aureus using the same sample was observed for PCR lateral flow (70.2%) than for bacteriological tests (48.6%). The above results show that PCR lateral flow for MRSA detection has high sensitivity, specificity, and speed, and its clinical application as a method for early diagnosis of MRSA infections appears to be feasible

    Mitochondrial DNA Mutations Induce Mitochondrial Dysfunction, Apoptosis and Sarcopenia in Skeletal Muscle of Mitochondrial DNA Mutator Mice

    Get PDF
    Background: Aging results in a progressive loss of skeletal muscle, a condition known as sarcopenia. Mitochondrial DNA (mtDNA) mutations accumulate with aging in skeletal muscle and correlate with muscle loss, although no causal relationship has been established. Methodology/Principal Findings: We investigated the relationship between mtDNA mutations and sarcopenia at the gene expression and biochemical levels using a mouse model that expresses a proofreading-deficient version (D257A) of the mitochondrial DNA Polymerase c, resulting in increased spontaneous mtDNA mutation rates. Gene expression profiling of D257A mice followed by Parametric Analysis of Gene Set Enrichment (PAGE) indicates that the D257A mutation is associated with a profound downregulation of gene sets associated with mitochondrial function. At the biochemical level, sarcopenia in D257A mice is associated with a marked reduction (35–50%) in the content of electron transport chain (ETC) complexes I, III and IV, all of which are partly encoded by mtDNA. D257A mice display impaired mitochondrial bioenergetics associated with compromised state-3 respiration, lower ATP content and a resulting decrease in mitochondrial membrane potential (Dym). Surprisingly, mitochondrial dysfunction was not accompanied by an increase in mitochondrial reactive oxygen species (ROS) production or oxidative damage. Conclusions/Significance: These findings demonstrate that mutations in mtDNA can be causal in sarcopenia by affecting the assembly of functional ETC complexes, the lack of which provokes a decrease in oxidative phosphorylation, without an increase in oxidative stress, and ultimately, skeletal muscle apoptosis and sarcopenia
    corecore