13 research outputs found
Mycobacterium tuberculosis nucleoid-associated DNA-binding protein H-NS binds with high-affinity to the Holliday junction and inhibits strand exchange promoted by RecA protein
A number of studies have shown that the structure and composition of bacterial nucleoid influences many a processes related to DNA metabolism. The nucleoid-associated proteins modulate not only the DNA conformation but also regulate the DNA metabolic processes such as replication, recombination, repair and transcription. Understanding of how these processes occur in the context of Mycobacterium tuberculosis nucleoid is of considerable medical importance because the nucleoid structure may be constantly remodeled in response to environmental signals and/or growth conditions. Many studies have concluded that Escherichia coli H-NS binds to DNA in a sequence-independent manner, with a preference for A-/T-rich tracts in curved DNA; however, recent studies have identified the existence of medium- and low-affinity binding sites in the vicinity of the curved DNA. Here, we show that the M. tuberculosis H-NS protein binds in a more structure-specific manner to DNA replication and repair intermediates, but displays lower affinity for double-stranded DNA with relatively higher GC content. Notably, M. tuberculosis H-NS was able to bind Holliday junction (HJ), the central recombination intermediate, with substantially higher affinity and inhibited the three-strand exchange promoted by its cognate RecA. Likewise, E. coli H-NS was able to bind the HJ and suppress DNA strand exchange promoted by E. coli RecA, although much less efficiently compared to M. tuberculosis H-NS. Our results provide new insights into a previously unrecognized function of H-NS protein, with implications for blocking the genome integration of horizontally transferred genes by homologous and/or homeologous recombination
Concentration-dependent organization of DNA by the dinoflagellate histone-like protein HCc3
The liquid crystalline chromosomes of dinoflagellates are the alternative to the nucleosome-based organization of chromosomes in the eukaryotes. These nucleosome-less chromosomes have to devise novel ways to maintain active parts of the genome. The dinoflagellate histone-like protein HCc3 has significant sequence identity with the bacterial DNA-binding protein HU. HCc3 also has a secondary structure resembling HU in silico. We have examined HCc3 in its recombinant form. Experiments on DNA-cellulose revealed its DNA-binding activity is on the C-terminal domain. The N-terminal domain is responsible for intermolecular oligomerization as demonstrated by cross-linking studies. However, HCc3 could not complement Escherichia coli HU-deficient mutants, suggesting functional differences. In ligation assays, HCc3-induced DNA concatenation but not ring closure as the DNA-bending HU does. The basic HCc3 was an efficient DNA condensing agent, but it did not behave like an ordinary polycationic compound. HCc3 also induced specific structures with DNA in a concentration-dependent manner, as demonstrated by atomic force microscopy (AFM). At moderate concentration of HCc3, DNA bridging and bundling were observed; at high concentrations, the complexes were even more condensed. These results are consistent with a biophysical role for HCc3 in maintaining extended DNA loops at the periphery of liquid crystalline chromosomes
Concentration-dependent organization of DNA by the dinoflagellate histone-like protein HCc3
The liquid crystalline chromosomes of dinoflagellates are the alternative to the nucleosome-based organization of chromosomes in the eukaryotes. These nucleosome-less chromosomes have to devise novel ways to maintain active parts of the genome. The dinoflagellate histone-like protein HCc3 has significant sequence identity with the bacterial DNA-binding protein HU. HCc3 also has a secondary structure resembling HU in silico. We have examined HCc3 in its recombinant form. Experiments on DNA-cellulose revealed its DNA-binding activity is on the C-terminal domain. The N-terminal domain is responsible for intermolecular oligomerization as demonstrated by cross-linking studies. However, HCc3 could not complement Escherichia coli HU-deficient mutants, suggesting functional differences. In ligation assays, HCc3-induced DNA concatenation but not ring closure as the DNA-bending HU does. The basic HCc3 was an efficient DNA condensing agent, but it did not behave like an ordinary polycationic compound. HCc3 also induced specific structures with DNA in a concentration-dependent manner, as demonstrated by atomic force microscopy (AFM). At moderate concentration of HCc3, DNA bridging and bundling were observed; at high concentrations, the complexes were even more condensed. These results are consistent with a biophysical role for HCc3 in maintaining extended DNA loops at the periphery of liquid crystalline chromosomes
Role of DnaB Helicase in UV-Induced Illegitimate Recombination in Escherichia coli
To study the involvement of DNA replication in UV-induced illegitimate recombination, we examined the effect of temperature-sensitive dnaB mutations on illegitimate recombination and found that the frequency of illegitimate recombination was reduced by an elongation-deficient mutation, dnaB14, but not by an initiation-deficient mutation, dnaB252. This result indicates that DNA replication is required for UV-induced illegitimate recombination. In addition, the dnaB14 mutation also affected spontaneous or UV-induced illegitimate recombination enhanced by the recQ mutation. Nucleotide sequence analyses of the recombination junctions showed that DnaB-mediated illegitimate recombination is short homology dependent. Previously, Michel et al. (B. Michel, S. Ehrlich, and M. Uzest, EMBO J. 16:430–438, 1997) showed that thermal treatment of the temperature-sensitive dnaB8 mutant induces double-stranded breaks, implying that induction of illegitimate recombination occurs. To explain the discrepancy between the observations, we propose a model for DnaB function, in which the dnaB mutations may exhibit two types of responses, early and late responses, for double-stranded break formation. In the early response, replication forks stall at damaged DNA, resulting in the formation of double-stranded breaks, and the dnaB14 mutation reduces the double-stranded breaks shortly after temperature shift-up. On the other hand, in the late response, the arrested replication forks mediated by the dnaB8 mutation may induce double-stranded breaks after prolonged incubation
Twenty-Four Hour Continuous Ghrelin Infusion Augments Physiologically Pulsatile, Nycthemeral, and Entropic (Feedback-Regulated) Modes of Growth Hormone Secretion
Background: Ghrelin is a 28-amino acid acylated peptide that potentiates GHRH stimulation and opposes somatostatin inhibition acutely. Whether prolonged ghrelin administration can sustain physiological patterns of GH secretion remains unknown