1,725 research outputs found

    Body mass index, mini nutritional assessment, and their association with five-year mortality in very old people

    Get PDF
    Objectives: To investigate the prevalence of malnutrition and the association between Body Mass Index (BMI), Mini Nutritional Assessment (MNA) and five-year mortality in a representative population of very old (>85 years) people. Design: A prospective cohort study. Setting: A population-based study of very old people in northern Sweden and western Finland, living in institutional care or in the community. Participants: Out of 1195 potential participants, 832 were included (mean age 90.2[+ or -]4.6 years). Measurements: Nutritional status was assessed using BMI and MNA and the association of those two variables with five-year mortality was analyzed. Results: The mean BMI value for the whole population was 25.1[+ or -]4.5 kg/m2, with no difference between genders (P=0.938). The mean MNA score was 22.5[+ or -]4.6 for the whole sample, and it was lower for women than for men (PA<0.001). Thirteen percent were malnourished (MNA<17) and 40.3% at risk of malnutrition (MNA 17--23.5) according to MNA. Also, 34.8% of those with a MNA score A<17 still had a BMI value a[yen]22.2 kg/m2. A BMI value A<22.2 kg/m2 and a MNA scoreA<17 were associated with lower survival. The association with mortality seemed to be J-shaped for BMI, and linear for MNA. Conclusions: Malnutrition according to MNA was common, but a substantial portion of those with a low MNA score still had a high BMI value, and vice versa. The association with mortality appeared to be J-shaped for BMI, and linear for MNA. The MNA seems to be a good measurement of malnutrition in very old people, and BMI might be misleading and could underestimate the prevalence of malnutrition, especially in women

    Is there really a debris disc around ζ2Reticuli\zeta^2\,\mathrm{Reticuli} ?

    Full text link
    The presence of a debris disc around the Gyr-old solar-type star ζ2Reticuli\zeta^2\,\mathrm{Reticuli} was suggested by the Spitzer\mathit{Spitzer} infrared excess detection. Follow-up observations with Herschel\mathit{Herschel}/PACS revealed a double-lobed feature, that displayed asymmetries both in brightness and position. Therefore, the disc was thought to be edge-on and significantly eccentric. Here we present ALMA/ACA observations in Band 6 and 7 which unambiguously reveal that these lobes show no common proper motion with ζ2Reticuli\zeta^2\,\mathrm{Reticuli}. In these observations, no flux has been detected around ζ2Reticuli\zeta^2\,\mathrm{Reticuli} that exceeds the 3σ3\sigma levels. We conclude that surface brightness upper limits of a debris disc around ζ2Reticuli\zeta^2\,\mathrm{Reticuli} are 5.7μJy/arcsec25.7\,\mathrm{\mu Jy/arcsec^2} at 1.3 mm, and 26μJy/arcsec226\,\mathrm{\mu Jy/arcsec^2} at 870 microns. Our results overall demonstrate the capability of the ALMA/ACA to follow-up Herschel\mathit{Herschel} observations of debris discs and clarify the effects of background confusion.Comment: 6 pages, 2 figures, 2 table

    Rethinking the divide: Exploring the interdependence between global and nested local markets

    Get PDF
    The debate on smallholder commodification trajectories tends to be polarised between mainstream approaches that advocate tighter integration of smallholders into global value chains, and alternative approaches that favour localised markets on the grounds that these provide greater autonomy over production and marketing, and allow a greater share of value to be realised for producers and the wider community. This debate obscures the interrelations and possible synergies between them; a critique taken up in this paper. Using a case study on agricultural diversification in the former homeland of Venda, South Africa, we explore the usefulness of the nested markets concept to make sense of smallholders' patterning of markets by combining tree crops for export with seasonal vegetables for local markets. Exploring the drivers of diversification, we show how farmers’ patterning of markets depends on their profiles and corresponding trajectory of accumulation. Local markets are articulated systems that function as hybrid spaces of interaction that enable farmers without any alternative off-farm income to gain and sustain access to global commodity markets. This challenges the framing of nested markets as an act of resistance as well as the dichotomy between local versus global markets as mutually exclusive. Instead, we argue that these markets can be interconnected and mutually supportive and are opportunistically used as such by petty commodity producers to sustain their export-oriented production system. If these relations are better understood, they stand to enable agrarian policy, which currently favours high-value tree crops, to be more inclusive of young and less well-resourced farmers

    HI and CO in the circumstellar environment of the oxygen-rich AGB star RX Lep

    Full text link
    Circumstellar shells around AGB stars are built over long periods of time that may reach several million years. They may therefore be extended over large sizes (~1 pc, possibly more), and different complementary tracers are needed to describe their global properties. In the present work, we combined 21-cm HI and CO rotational line data obtained on an oxygen-rich semi-regular variable, RX Lep, to describe the global properties of its circumstellar environment. With the SEST, we detected the CO(2-1) rotational line from RX Lep. The line profile is parabolic and implies an expansion velocity of ~4.2 km/s and a mass-loss rate ~1.7 10^-7 Msun/yr (d = 137 pc). The HI line at 21 cm was detected with the Nancay Radiotelescope on the star position and at several offset positions. The linear shell size is relatively small, ~0.1 pc, but we detect a trail extending southward to ~0.5 pc. The line profiles are approximately Gaussian with an FWHM ~3.8 km/s and interpreted with a model developed for the detached shell around the carbon-rich AGB star Y CVn. Our HI spectra are well-reproduced by assuming a constant outflow (Mloss = 1.65 10^-7 Msun/yr) of ~4 10^4 years duration, which has been slowed down by the external medium. The spatial offset of the HI source is consistent with the northward direction of the proper motion, lending support to the presence of a trail resulting from the motion of the source through the ISM, as already suggested for Mira, RS Cnc, and other sources detected in HI. The source was also observed in SiO (3 mm) and OH (18 cm), but not detected. The properties of the external parts of circumstellar shells around AGB stars should be dominated by the interaction between stellar outflows and external matter for oxygen-rich, as well as for carbon-rich, sources, and the 21-cm HI line provides a very useful tracer of these regions.Comment: 15 pages, 9 figures, accepted for publication in A&

    Infrared Variability of Two Dusty White Dwarfs

    Get PDF
    The most heavily polluted white dwarfs often show excess infrared radiation from circumstellar dust disks, which are modeled as a result of tidal disruption of extrasolar minor planets. Interaction of dust, gas, and disintegrating objects can all contribute to the dynamical evolution of these dust disks. Here, we report on two infrared variable dusty white dwarfs, SDSS J1228+1040 and G29-38. For SDSS J1228+1040, compared to the first measurements in 2007, the IRAC [3.6] and [4.5] fluxes decreased by 20% by 2014 to a level also seen in the recent 2018 observations. For G29-38, the infrared flux of the 10 μ\mum silicate emission feature became 10% stronger between 2004 and 2007, We explore several scenarios that could account for these changes, including tidal disruption events, perturbation from a companion, and runaway accretion. No satisfactory causes are found for the flux drop in SDSS J1228+1040 due to the limited time coverage. Continuous tidal disruption of small planetesimals could increase the mass of small grains and concurrently change the strength of the 10 μ\mum feature of G29-38. Dust disks around white dwarfs are actively evolving and we speculate that there could be different mechanisms responsible for the temporal changes of these disks.Comment: ApJ, in pres

    Hunting for the elusive methylene radical

    Get PDF
    Context. The NKaKc = 404-313 transitions of ortho-CH2 between 68 and 71 GHz were first detected toward the Orion-KL and W51 Main star-forming regions. Given their high upper level energies (225 K) above the ground state, they were naturally thought to arise in dense, hot molecular cores near newly formed stars. However, this has not been confirmed by further observations of these lines and their origin has remained unclear. Generally, there is a scarcity of observational data for CH2 and, while it is an important compound in the astrochemical context, its actual occurrence in astronomical sources is poorly constrained. Aims. In this work, we aim to investigate the nature of the elusive CH2 emission, address its association with hot cores, and examine alternative possibilities for its origin. Owing to its importance in carbon chemistry, we also extend the search for CH2 lines by observing an assortment of regions, guided by the hypothesis that the observed CH2 emission is likely to arise from the hot gas environment of photodissociation regions (PDRs). Methods. We carried out our observations first using the Kitt Peak 12 m telescope to verify the original detection of CH2 toward different positions in the central region of the Orion Molecular Cloud 1. These were followed-up by deep integrations using the higher angular resolution of the Onsala 20 m telescope. We also searched for the NKaKc = 212-303 transitions of para-CH2 between 440-445 GHz toward the Orion giant molecular cloud complex using the APEX 12 m telescope. We also obtained auxiliary data for carbon recombination lines with the Effelsberg 100 m telescope and employing archival far infrared data. Results. The present study, along with other recent observations of the Orion region reported here, rule out the possibility of an association with gas that is both hot and dense. We find that the distribution of the CH2 emission closely follows that of the [CII] 158 μm emission, while CH2 is undetected toward the hot core itself. The observations suggest, rather, that its extended emission arises from hot but dilute layers of PDRs and not from the denser parts of such regions as in the case of the Orion Bar. This hypothesis was corroborated by comparisons of the observed CH2 line profiles with those of carbon radio recombination lines (CRRLs), which are well-known PDR tracers. In addition, we report the detection of the 70 GHz fine- and hyperfine structure components of ortho-CH2 toward the W51 E, W51 M, W51 N, W49 N, W43, W75 N, DR21, and S140 star-forming regions, and three of the NKaKc = 404-313 fine- and hyperfine structure transitions between 68-71 GHz toward W3 IRS5. While we have no information on the spatial distribution of CH2 in these regions, aside from that in W51, we again see a correspondence between the profiles of CH2 lines and those of CRRLs. We see a stronger CH2 emission toward the extended HII region W51 M rather than toward the much more massive and denser W51 E and N regions, which strongly supports the origin of CH2 in extended dilute gas. We also report the non-detection of the 212-303 transitions of para-CH2 toward Orion. Furthermore, using a non-LTE radiative transfer analysis, we can constrain the gas temperatures and H2 density to (163 \ub1 26) K and (3.4 \ub1 0.3) 7 103 cm-3, respectively, for the 68-71 GHz ortho-CH2 transitions toward W3 IRS5, for which we have a data set of the highest quality. This analysis confirms our hypothesis that CH2 originates inwarm and dilute PDR layers. Our analysis suggests that for the excitation conditions under the physical conditions that prevail in such an environment, these lines are masering, with weak level inversion. The resulting amplification of the lines\u27 spontaneousemission greatly aids in their detection

    Hunting for the elusive methylene radical

    Get PDF
    CH2 transitions between 68 and 71 GHz were first detected toward the Orion-KL and W51 Main SFRs. Given their upper level energies of 225 K, they were thought to arise in dense, hot molecular cores near newly formed stars. However, this has not been confirmed by further observations of these lines and their origin has remained unclear. Generally, there is a scarcity of observational data for CH2 and, while it is an important compound in the astrochemical context, its actual occurrence in astronomical sources is poorly constrained. The present study, along with other recent observations of the Orion region we report, rule out the possibility of an association with gas that is both hot and dense. We find that the distribution of the CH2 emission closely follows that of the [CII] 158 um emission, while CH2 is undetected toward the hot core itself. The observations suggest, rather, that its extended emission arises from hot but dilute layers of PDRs and not from the denser parts of such regions as in the case of the Orion Bar. This hypothesis was corroborated by comparisons of the observed CH2 line profiles with those of CRRLs, well-known PDR tracers. In addition, we report the detection of the 70 GHz fine- and hfs lines of o-CH2 toward the W51E, W51M, W51N, W49N, W43, W75N, DR21, and S140 SFRs, and three of the fine- and hfs lines between 68-71 GHz toward W3 IRS5. Furthermore, using a non-LTE radiative transfer analysis, we can constrain the gas temperatures and H2 density to 163 K and 3.4e3 cm^-3, respectively. This analysis confirms our hypothesis that CH2 originates in warm and dilute PDR layers. Our analysis suggests that for the excitation conditions under the physical conditions that prevail in such regions, these lines are masering, with weak level inversion. The resulting amplification of the lines' spontaneous emission greatly aids in their detection.Comment: Accepted in A&A, 25 pages, 18 figures, 5 table

    The very low-mass population of the Corona Australis and Chamaeleon II star forming regions

    Full text link
    We present the results of a deep optical survey in the Corona Australis and Chamaeleon II star forming regions. Our optical photometry is combined with available near- and mid-infrared photometry to identify very low-mass candidate members in these dark clouds. In our Chamaeleon II field, only one object exhibits clear H-alpha emission, but the discrepancy between its optical and near-infrared colours suggests that it might be a foreground star. We also identify two objects without H-alpha emission that could be planetary mass members of Chamaeleon II. In Corona Australis, we find ten stars and three brown dwarf candidates in the Coronet cluster. Five of our new members are identified with ISOCAM sources. Only two of them have a mid-infrared excess, indicating the presence of an accretion disk. On the other hand, one brown dwarf candidate has a faint close companion, seen only in our deepest I-band image. For many of the candidates in both clouds, membership could not be inferred from their H-alpha emission or near-infrared colours; these objects need spectroscopic confirmation of their status
    corecore