97 research outputs found
An Ontological Framework for Opportunistic Composition of IoT Systems
As the number of connected devices rapidly increases, largely thanks to uptake of IoT technologies, there is significant stimulus to enable opportunistic interactions between different systems that encounter each other at run time. However, this is complicated by diversity in IoT technologies and implementation details that are not known in advance. To achieve such unplanned interactions, we use the concept of a holon to represent a system's services and requirements at a high level. A holon is a self-describing system that appears as a whole when viewed from above whilst potentially comprising multiple sub-systems when viewed from below. In order to realise this world view and facilitate opportunistic system interactions, we propose the idea of using ontologies to define and program a holon. Ontologies offer the ability to classify the concepts of a domain, and use this formalised knowledge to infer new knowledge through reasoning. In this paper, we design a holon ontology and associated code generation tools. We also explore a case study of how programming holons using this approach can aid an IoT system to self-describe and reason about other systems it encounters. As such, developers can develop system composition logic at a high-level without any preconceived notions about low-level implementation details. © 2020 IEEE
Mouse Hind Limb Skeletal Muscle Functional Adaptation in a Simulated Fine Branch Arboreal Habitat
The musculoskeletal system is remarkably plastic during growth. The purpose of this study was to examine the muscular plasticity in functional and structural properties in a model known to result in significant developmental plasticity of the postcranial skeleton. Fifteen weanling C57BL/6 mice were raised to 16 weeks of age in one of two enclosures: a climbing enclosure that simulates a fine branch arboreal habitat and is traversed by steel wires crossing at 45° relative to horizontal at multiple intersections, and a control enclosure that resembles a parking deck with no wires but the same volume of habitable space. At killing, ex vivo contractility properties of the soleus (SOL) and extensor digitorum longus (EDL) muscles were examined. Our results demonstrate that EDL muscles of climbing mice contracted with higher specific forces and were comprised of muscle fibers with slower myosin heavy chain isoforms. EDL muscles also fatigued at a higher rate in climbing mice compared to controls. SOL muscle function is not affected by the climbing environment. Likewise, mass and architecture of both EDL and SOL muscles were not different between climbing and control mice. Our data demonstrate that functional adaptation does not require concomitant architectural adaptation in order to increase contractile force
Securing Machine Learning in the Cloud: A Systematic Review of Cloud Machine Learning Security.
With the advances in machine learning (ML) and deep learning (DL) techniques, and the potency of cloud computing in offering services efficiently and cost-effectively, Machine Learning as a Service (MLaaS) cloud platforms have become popular. In addition, there is increasing adoption of third-party cloud services for outsourcing training of DL models, which requires substantial costly computational resources (e.g., high-performance graphics processing units (GPUs)). Such widespread usage of cloud-hosted ML/DL services opens a wide range of attack surfaces for adversaries to exploit the ML/DL system to achieve malicious goals. In this article, we conduct a systematic evaluation of literature of cloud-hosted ML/DL models along both the important dimensions-attacks and defenses-related to their security. Our systematic review identified a total of 31 related articles out of which 19 focused on attack, six focused on defense, and six focused on both attack and defense. Our evaluation reveals that there is an increasing interest from the research community on the perspective of attacking and defending different attacks on Machine Learning as a Service platforms. In addition, we identify the limitations and pitfalls of the analyzed articles and highlight open research issues that require further investigation
SecureMind: A Framework for Benchmarking Large Language Models in Memory Bug Detection and Repair
Large language models (LLMs) hold great promise for automating software vulnerability detection and repair, but ensuring their correctness remains a challenge. While recent work has developed benchmarks for evaluating LLMs in bug detection and repair, existing studies rely on hand-crafted datasets that quickly become outdated. Moreover, systematic evaluation of advanced reasoning-based LLMs using chain-of-thought prompting for software security is lacking. We introduce SecureMind, an open-source framework for evaluating LLMs in vulnerability detection and repair, focusing on memory-related vulnerabilities. SecureMind provides a user-friendly Python interface for defining test plans, which automates data retrieval, preparation, and benchmarking across a wide range of metrics. Using SecureMind, we assess 10 representative LLMs, including 7 state-of-the-art reasoning models, on 16K test samples spanning 8 Common Weakness Enumeration (CWE) types related to memory safety violations. Our findings highlight the strengths and limitations of current LLMs in handling memory-related vulnerabilities
A multi-disciplinary perspective on emergent and future innovations in peer review [version 2; referees: 2 approved]
Peer review of research articles is a core part of our scholarly communication system. In spite of its importance, the status and purpose of peer review is often contested. What is its role in our modern digital research and communications infrastructure? Does it perform to the high standards with which it is generally regarded? Studies of peer review have shown that it is prone to bias and abuse in numerous dimensions, frequently unreliable, and can fail to detect even fraudulent research. With the advent of web technologies, we are now witnessing a phase of innovation and experimentation in our approaches to peer review. These developments prompted us to examine emerging models of peer review from a range of disciplines and venues, and to ask how they might address some of the issues with our current systems of peer review. We examine the functionality of a range of social Web platforms, and compare these with the traits underlying a viable peer review system: quality control, quantified performance metrics as engagement incentives, and certification and reputation. Ideally, any new systems will demonstrate that they out-perform and reduce the biases of existing models as much as possible. We conclude that there is considerable scope for new peer review initiatives to be developed, each with their own potential issues and advantages. We also propose a novel hybrid platform model that could, at least partially, resolve many of the socio-technical issues associated with peer review, and potentially disrupt the entire scholarly communication system. Success for any such development relies on reaching a critical threshold of research community engagement with both the process and the platform, and therefore cannot be achieved without a significant change of incentives in research environments
A multi-disciplinary perspective on emergent and future innovations in peer review [version 1; peer review: 2 approved with reservations]
Peer review of research articles is a core part of our scholarly communication system. In spite of its importance, the status and purpose of peer review is often contested. What is its role in our modern digital research and communications infrastructure? Does it perform to the high standards with which it is generally regarded? Studies of peer review have shown that it is prone to bias and abuse in numerous dimensions, frequently unreliable, and can fail to detect even fraudulent research. With the advent of Web technologies, we are now witnessing a phase of innovation and experimentation in our approaches to peer review. These developments prompted us to examine emerging models of peer review from a range of disciplines and venues, and to ask how they might address some of the issues with our current systems of peer review. We examine the functionality of a range of social Web platforms, and compare these with the traits underlying a viable peer review system: quality control, quantified performance metrics as engagement incentives, and certification and reputation. Ideally, any new systems will demonstrate that they out-perform current models while avoiding as many of the biases of existing systems as possible. We conclude that there is considerable scope for new peer review initiatives to be developed, each with their own potential issues and advantages. We also propose a novel hybrid platform model that, at least partially, resolves many of the technical and social issues associated with peer review, and can potentially disrupt the entire scholarly communication system. Success for any such development relies on reaching a critical threshold of research community engagement with both the process and the platform, and therefore cannot be achieved without a significant change of incentives in research environments
S100P enhances the motility and invasion of human trophoblast cell lines
S100P has been shown to be a marker for carcinogenesis where its expression in solid tumours correlates with metastasis and a poor patient prognosis. This protein’s role in any physiological process is, however, unknown. Here we first show that S100P is expressed both in trophoblasts in vivo as well as in some corresponding cell lines in culture. We demonstrate that S100P is predominantly expressed during the early stage of placental formation with its highest expression levels occurring during the first trimester of gestation, particularly in the invading columns and anchoring villi. Using gain or loss of function studies through overexpression or knockdown of S100P expression respectively, our work shows that S100P stimulates both cell motility and cellular invasion in different trophoblastic and first trimester EVT cell lines. Interestingly, cell invasion was seen to be more dramatically affected than cell migration. Our results suggest that S100P may be acting as an important regulator of trophoblast invasion during placentation. This finding sheds new light on a hitherto uncharacterized molecular mechanism which may, in turn, lead to the identification of novel targets that may explain why significant numbers of confirmed human pregnancies suffer complications through poor placental implantation
A multi-disciplinary perspective on emergent and future innovations in peer review
Peer review of research articles is a core part of our scholarly communication system. In spite of its importance, the status and purpose of peer review is often contested. What is its role in our modern digital research and communications infrastructure? Does it perform to the high standards with which it is generally regarded? Studies of peer review have shown that it is prone to bias and abuse in numerous dimensions, frequently unreliable, and can fail to detect even fraudulent research. With the advent of web technologies, we are now witnessing a phase of innovation and experimentation in our approaches to peer review. These developments prompted us to examine emerging models of peer review from a range of disciplines and venues, and to ask how they might address some of the issues with our current systems of peer review. We examine the functionality of a range of social Web platforms, and compare these with the traits underlying a viable peer review system: quality control, quantified performance metrics as engagement incentives, and certification and reputation. Ideally, any new systems will demonstrate that they out-perform and reduce the biases of existing models as much as possible. We conclude that there is considerable scope for new peer review initiatives to be developed, each with their own potential issues and advantages. We also propose a novel hybrid platform model that could, at least partially, resolve many of the socio-technical issues associated with peer review, and potentially disrupt the entire scholarly communication system. Success for any such development relies on reaching a critical threshold of research community engagement with both the process and the platform, and therefore cannot be achieved without a significant change of incentives in research environments
- …
