1,448 research outputs found

    A search for solar-like oscillations in the Am star HD 209625

    Full text link
    The goal is to test the structure of hot metallic stars, and in particular the structure of a near-surface convection zone using asteroseismic measurements. Indeed, stellar models including a detailed treatement of the radiative diffusion predict the existence of a near-surface convection zone in order to correctly reproduce the anomalies in surface abundances that are observed in Am stars. The Am star HD 209625 was observed with the Harps spectrograph mounted on the 3.6-m telescope at the ESO La Silla Observatory (Chile) during 9 nights in August 2005. This observing run allowed us to collect 1243 radial velocity (RV) measurements, with a standard deviation of 1.35 m/s. The power spectrum associated with these RV measurements does not present any excess. Therefore, either the structure of the external layers of this star does not allow excitation of solar-like oscillations, or the amplitudes of the oscillations remain below 20-30 cm/s (depending on their frequency range).Comment: 5 pages, 4 figures, A&A accepte

    Searching for solar-like oscillations in the delta Scuti star rho Puppis

    Full text link
    Despite the shallow convective envelopes of delta Scuti pulsators, solar-like oscillations are theoretically predicted to be excited in those stars as well. To search for such stochastic oscillations we organised a spectroscopic multi-site campaign for the bright, metal-rich delta Sct star rho Puppis. We obtained a total of 2763 high-resolution spectra using four telescopes. We discuss the reduction and analysis with the iodine cell technique, developed for searching for low-amplitude radial velocity variations, in the presence of high-amplitude variability. Furthermore, we have determined the angular diameter of rho Puppis to be 1.68 \pm 0.03 mas, translating into a radius of 3.52 \pm 0.07Rsun. Using this value, the frequency of maximum power of possible solar-like oscillations, is expected at ~43 \pm 2 c/d (498 \pm 23 muHz). The dominant delta Scuti-type pulsation mode of rho Puppis is known to be the radial fundamental mode which allows us to determine the mean density of the star, and therefore an expected large frequency separation of 2.73 c/d (31.6 muHz). We conclude that 1) the radial velocity amplitudes of the delta Scuti pulsations are different for different spectral lines; 2) we can exclude solar-like oscillations to be present in rho Puppis with an amplitude per radial mode larger than 0.5 m/s.Comment: 14 pages, 12 figure, accepted for MNRA

    Asteroseismic modelling of the metal-poor star Tau Ceti

    Full text link
    Context. Asteroseismology is an effcient tool not only for testing stellar structure and evolutionary theory but also constraining the parameters of stars for which solar-like oscillations are detected, presently. As an important southern asteroseismic target, Tau Ceti, is a metal-poor star. The main features of the oscillations and some frequencies of ? Ceti have been identified. Many scientists propose to comprehensively observe this star as part of the Stellar Observations Network Group. Aims. Our goal is to obtain the optimal model and reliable fundamental parameters for the metal-poor star Tau Ceti by combining all non-asteroseismic observations with these seismological data. Methods. Using the Yale stellar evolution code (YREC), a grid of stellar model candidates that fall within all the error boxes in the HR diagram have been constructed, and both the model frequencies and large- and small- frequency separations are calculated using the Guenther's stellar pulsation code. The \chi2c minimization is performed to identify the optimal modelling parameters that reproduce the observations within their errors. The frequency corrections of near-surface effects to the calculated frequencies using the empirical law, as proposed by Kjeldsen and coworkers, are applied to the models. Results. We derive optimal models, corresponding to masses of about 0.775 - 0.785 M? and ages of about 8 - 10 Gyr. Furthermore, we find that the quantities derived from the non-asteroseismic observations (effective temperature and luminosity) acquired spectroscopically are more accurate than those inferred from interferometry for ? Ceti, because our optimal models are in the error boxes B and C, which are derived from spectroscopy results.Comment: 8 pages, 5 figures, accepted by A&

    Modelling a high-mass red giant observed by CoRoT

    Get PDF
    The G6 giant HR\,2582 (HD\,50890) was observed by CoRoT for approximately 55 days. Mode frequencies are extracted from the observed Fourier spectrum of the light curve. Numerical stellar models are then computed to determine the characteristics of the star (mass, age, etc...) from the comparison with observational constraints. We provide evidence for the presence of solar-like oscillations at low frequency, between 10 and 20\,μ\muHz, with a regular spacing of (1.7±0.1)μ(1.7\pm0.1)\muHz between consecutive radial orders. Only radial modes are clearly visible. From the models compatible with the observational constraints used here, We find that HR\,2582 (HD\,50890) is a massive star with a mass in the range (3--\,5\,MM_{\odot}), clearly above the red clump. It oscillates with rather low radial order (nn = 5\,--\,12) modes. Its evolutionary stage cannot be determined with precision: the star could be on the ascending red giant branch (hydrogen shell burning) with an age of approximately 155 Myr or in a later phase (helium burning). In order to obtain a reasonable helium amount, the metallicity of the star must be quite subsolar. Our best models are obtained with a mixing length significantly smaller than that obtained for the Sun with the same physical description (except overshoot). The amount of core overshoot during the main-sequence phase is found to be mild, of the order of 0.1\,HpH_{\rm p}.Comment: Accepted in A&

    Models of red giants in the CoRoT asteroseismology fields combining asteroseismic and spectroscopic constraints

    Get PDF
    Context. The availability of asteroseismic constraints for a large sample of red giant stars from the CoRoT and Kepler missions paves the way for various statistical studies of the seismic properties of stellar populations. Aims. We use the first detailed spectroscopic study of 19 CoRoT red-giant stars (Morel et al 2014) to compare theoretical stellar evolution models to observations of the open cluster NGC 6633 and field stars. Methods. In order to explore the effects of rotation-induced mixing and thermohaline instability, we compare surface abundances of carbon isotopic ratio and lithium with stellar evolution predictions. These chemicals are sensitive to extra-mixing on the red-giant branch. Results. We estimate mass, radius, and distance for each star using the seismic constraints. We note that the Hipparcos and seismic distances are different. However, the uncertainties are such that this may not be significant. Although the seismic distances for the cluster members are self consistent they are somewhat larger than the Hipparcos distance. This is an issue that should be considered elsewhere. Models including thermohaline instability and rotation-induced mixing, together with the seismically determined masses can explain the chemical properties of red-giants targets. However, with this sample of stars we cannot perform stringent tests of the current stellar models. Tighter constraints on the physics of the models would require the measurement of the core and surface rotation rates, and of the period spacing of gravity-dominated mixed modes. A larger number of stars with longer times series, as provided by Kepler or expected with Plato, would help for ensemble asteroseismology.Comment: Accepted 03/05/201

    The Effect of Three-Dimensional Freestream Disturbances on the Supersonic Flow Past a Wedge

    Get PDF
    The interaction between a shock wave (attached to a wedge) and small amplitude, three-dimensional disturbances of a uniform, supersonic, freestream flow are investigated. The paper extends the two-dimensional study of Duck et al, through the use of vector potentials, which render the problem tractable by the same techniques as in the two-dimensional case, in particular by expansion of the solution by means of a Fourier-Bessel series, in appropriately chosen coordinates. Results are presented for specific classes of freestream disturbances, and the study shows conclusively that the shock is stable to all classes of disturbances (i.e. time periodic perturbations to the shock do not grow downstream), provided the flow downstream of the shock is supersonic (loosely corresponding to the weak shock solution). This is shown from our numerical results and also by asymptotic analysis of the Fourier-Bessel series, valid far downstream of the shock

    Optical properties of structurally-relaxed Si/SiO2_2 superlattices: the role of bonding at interfaces

    Full text link
    We have constructed microscopic, structurally-relaxed atomistic models of Si/SiO2_2 superlattices. The structural distortion and oxidation-state characteristics of the interface Si atoms are examined in detail. The role played by the interface Si suboxides in raising the band gap and producing dispersionless energy bands is established. The suboxide atoms are shown to generate an abrupt interface layer about 1.60 \AA thick. Bandstructure and optical-absorption calculations at the Fermi Golden rule level are used to demonstrate that increasing confinement leads to (a) direct bandgaps (b) a blue shift in the spectrum, and (c) an enhancement of the absorption intensity in the threshold-energy region. Some aspects of this behaviour appear not only in the symmetry direction associated with the superlattice axis, but also in the orthogonal plane directions. We conclude that, in contrast to Si/Ge, Si/SiO2_2 superlattices show clear optical enhancement and a shift of the optical spectrum into the region useful for many opto-electronic applications.Comment: 11 pages, 10 figures (submitted to Phys. Rev. B
    corecore